From d8e683386f8c04a875c16deaad737a2fc3ffa89b Mon Sep 17 00:00:00 2001 From: Ray Strode Date: Fri, 21 Apr 2017 15:22:14 -0400 Subject: [PATCH] gallivm: fixes misrendering on big-endian systems Not sure if this change is right, I just know it makes the problem go away. --- src/gallium/auxiliary/gallivm/lp_bld_format_soa.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/src/gallium/auxiliary/gallivm/lp_bld_format_soa.c b/src/gallium/auxiliary/gallivm/lp_bld_format_soa.c index 98eb694..a0a5507 100644 --- a/src/gallium/auxiliary/gallivm/lp_bld_format_soa.c +++ b/src/gallium/auxiliary/gallivm/lp_bld_format_soa.c @@ -413,442 +413,441 @@ void lp_build_fetch_rgba_soa(struct gallivm_state *gallivm, const struct util_format_description *format_desc, struct lp_type type, boolean aligned, LLVMValueRef base_ptr, LLVMValueRef offset, LLVMValueRef i, LLVMValueRef j, LLVMValueRef cache, LLVMValueRef rgba_out[4]) { LLVMBuilderRef builder = gallivm->builder; enum pipe_format format = format_desc->format; struct lp_type fetch_type; if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN && (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB || format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB || format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) && format_desc->block.width == 1 && format_desc->block.height == 1 && format_desc->block.bits <= type.width && (format_desc->channel[0].type != UTIL_FORMAT_TYPE_FLOAT || format_desc->channel[0].size == 32 || format_desc->channel[0].size == 16)) { /* * The packed pixel fits into an element of the destination format. Put * the packed pixels into a vector and extract each component for all * vector elements in parallel. */ LLVMValueRef packed; /* * gather the texels from the texture * Ex: packed = {XYZW, XYZW, XYZW, XYZW} */ assert(format_desc->block.bits <= type.width); fetch_type = lp_type_uint(type.width); packed = lp_build_gather(gallivm, type.length, format_desc->block.bits, fetch_type, aligned, base_ptr, offset, FALSE); /* * convert texels to float rgba */ lp_build_unpack_rgba_soa(gallivm, format_desc, type, packed, rgba_out); return; } if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN && (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB) && format_desc->block.width == 1 && format_desc->block.height == 1 && format_desc->block.bits > type.width && ((format_desc->block.bits <= type.width * type.length && format_desc->channel[0].size <= type.width) || (format_desc->channel[0].size == 64 && format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT && type.floating))) { /* * Similar to above, but the packed pixel is larger than what fits * into an element of the destination format. The packed pixels will be * shuffled into SoA vectors appropriately, and then the extraction will * be done in parallel as much as possible. * Good for 16xn (n > 2) and 32xn (n > 1) formats, care is taken so * the gathered vectors can be shuffled easily (even with avx). * 64xn float -> 32xn float is handled too but it's a bit special as * it does the conversion pre-shuffle. */ LLVMValueRef packed[4], dst[4], output[4], shuffles[LP_MAX_VECTOR_WIDTH/32]; struct lp_type fetch_type, gather_type = type; unsigned num_gather, fetch_width, i, j; struct lp_build_context bld; boolean fp64 = format_desc->channel[0].size == 64; lp_build_context_init(&bld, gallivm, type); assert(type.width == 32); assert(format_desc->block.bits > type.width); /* * First, figure out fetch order. */ fetch_width = util_next_power_of_two(format_desc->block.bits); /* * fp64 are treated like fp32 except we fetch twice wide values * (as we shuffle after trunc). The shuffles for that work out * mostly fine (slightly suboptimal for 4-wide, perfect for AVX) * albeit we miss the potential opportunity for hw gather (as it * only handles native size). */ num_gather = fetch_width / type.width; gather_type.width *= num_gather; if (fp64) { num_gather /= 2; } gather_type.length /= num_gather; for (i = 0; i < num_gather; i++) { LLVMValueRef offsetr, shuf_vec; if(num_gather == 4) { for (j = 0; j < gather_type.length; j++) { unsigned idx = i + 4*j; shuffles[j] = lp_build_const_int32(gallivm, idx); } shuf_vec = LLVMConstVector(shuffles, gather_type.length); offsetr = LLVMBuildShuffleVector(builder, offset, offset, shuf_vec, ""); } else if (num_gather == 2) { assert(num_gather == 2); for (j = 0; j < gather_type.length; j++) { unsigned idx = i*2 + (j%2) + (j/2)*4; shuffles[j] = lp_build_const_int32(gallivm, idx); } shuf_vec = LLVMConstVector(shuffles, gather_type.length); offsetr = LLVMBuildShuffleVector(builder, offset, offset, shuf_vec, ""); } else { assert(num_gather == 1); offsetr = offset; } if (gather_type.length == 1) { LLVMValueRef zero = lp_build_const_int32(gallivm, 0); offsetr = LLVMBuildExtractElement(builder, offsetr, zero, ""); } /* * Determine whether to use float or int loads. This is mostly * to outsmart the (stupid) llvm int/float shuffle logic, we * don't really care much if the data is floats or ints... * But llvm will refuse to use single float shuffle with int data * and instead use 3 int shuffles instead, the code looks atrocious. * (Note bitcasts often won't help, as llvm is too smart to be * fooled by that.) * Nobody cares about simd float<->int domain transition penalties, * which usually don't even exist for shuffles anyway. * With 4x32bit (and 3x32bit) fetch, we use float vec (the data is * going into transpose, which is unpacks, so doesn't really matter * much). * With 2x32bit or 4x16bit fetch, we use float vec, since those * go into the weird channel separation shuffle. With floats, * this is (with 128bit vectors): * - 2 movq, 2 movhpd, 2 shufps * With ints it would be: * - 4 movq, 2 punpcklqdq, 4 pshufd, 2 blendw * I've seen texture functions increase in code size by 15% just due * to that (there's lots of such fetches in them...) * (We could chose a different gather order to improve this somewhat * for the int path, but it would basically just drop the blends, * so the float path with this order really is optimal.) * Albeit it is tricky sometimes llvm doesn't ignore the float->int * casts so must avoid them until we're done with the float shuffle... * 3x16bit formats (the same is also true for 3x8) are pretty bad but * there's nothing we can do about them (we could overallocate by * those couple bytes and use unaligned but pot sized load). * Note that this is very much x86 specific. I don't know if this * affect other archs at all. */ if (num_gather > 1) { /* * We always want some float type here (with x86) * due to shuffles being float ones afterwards (albeit for * the num_gather == 4 case int should work fine too * (unless there's some problems with avx but not avx2). */ if (format_desc->channel[0].size == 64) { fetch_type = lp_type_float_vec(64, gather_type.width); } else { fetch_type = lp_type_int_vec(32, gather_type.width); } } else { /* type doesn't matter much */ if (format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT && (format_desc->channel[0].size == 32 || format_desc->channel[0].size == 64)) { fetch_type = lp_type_float(gather_type.width); } else { fetch_type = lp_type_uint(gather_type.width); } } /* Now finally gather the values */ packed[i] = lp_build_gather(gallivm, gather_type.length, format_desc->block.bits, fetch_type, aligned, base_ptr, offsetr, FALSE); if (fp64) { struct lp_type conv_type = type; conv_type.width *= 2; packed[i] = LLVMBuildBitCast(builder, packed[i], lp_build_vec_type(gallivm, conv_type), ""); packed[i] = LLVMBuildFPTrunc(builder, packed[i], bld.vec_type, ""); } } /* shuffle the gathered values to SoA */ if (num_gather == 2) { for (i = 0; i < num_gather; i++) { for (j = 0; j < type.length; j++) { unsigned idx = (j%2)*2 + (j/4)*4 + i; if ((j/2)%2) idx += type.length; shuffles[j] = lp_build_const_int32(gallivm, idx); } dst[i] = LLVMBuildShuffleVector(builder, packed[0], packed[1], LLVMConstVector(shuffles, type.length), ""); } } else if (num_gather == 4) { lp_build_transpose_aos(gallivm, lp_int_type(type), packed, dst); } else { assert(num_gather == 1); dst[0] = packed[0]; } /* * And finally unpack exactly as above, except that * chan shift is adjusted and the right vector selected. */ if (!fp64) { for (i = 0; i < num_gather; i++) { dst[i] = LLVMBuildBitCast(builder, dst[i], bld.int_vec_type, ""); } for (i = 0; i < format_desc->nr_channels; i++) { struct util_format_channel_description chan_desc = format_desc->channel[i]; unsigned blockbits = type.width; - unsigned vec_nr = chan_desc.shift / type.width; chan_desc.shift %= type.width; output[i] = lp_build_extract_soa_chan(&bld, blockbits, FALSE, chan_desc, - dst[vec_nr]); + dst[i]); } } else { for (i = 0; i < format_desc->nr_channels; i++) { output[i] = dst[i]; } } lp_build_format_swizzle_soa(format_desc, &bld, output, rgba_out); return; } if (format == PIPE_FORMAT_R11G11B10_FLOAT || format == PIPE_FORMAT_R9G9B9E5_FLOAT) { /* * similar conceptually to above but requiring special * AoS packed -> SoA float conversion code. */ LLVMValueRef packed; struct lp_type fetch_type = lp_type_uint(type.width); assert(type.floating); assert(type.width == 32); packed = lp_build_gather(gallivm, type.length, format_desc->block.bits, fetch_type, aligned, base_ptr, offset, FALSE); if (format == PIPE_FORMAT_R11G11B10_FLOAT) { lp_build_r11g11b10_to_float(gallivm, packed, rgba_out); } else { lp_build_rgb9e5_to_float(gallivm, packed, rgba_out); } return; } if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS && format_desc->block.bits == 64) { /* * special case the format is 64 bits but we only require * 32bit (or 8bit) from each block. */ LLVMValueRef packed; struct lp_type fetch_type = lp_type_uint(type.width); if (format == PIPE_FORMAT_X32_S8X24_UINT) { /* * for stencil simply fix up offsets - could in fact change * base_ptr instead even outside the shader. */ unsigned mask = (1 << 8) - 1; LLVMValueRef s_offset = lp_build_const_int_vec(gallivm, type, 4); offset = LLVMBuildAdd(builder, offset, s_offset, ""); packed = lp_build_gather(gallivm, type.length, 32, fetch_type, aligned, base_ptr, offset, FALSE); packed = LLVMBuildAnd(builder, packed, lp_build_const_int_vec(gallivm, type, mask), ""); } else { assert (format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT); packed = lp_build_gather(gallivm, type.length, 32, fetch_type, aligned, base_ptr, offset, TRUE); packed = LLVMBuildBitCast(builder, packed, lp_build_vec_type(gallivm, type), ""); } /* for consistency with lp_build_unpack_rgba_soa() return sss1 or zzz1 */ rgba_out[0] = rgba_out[1] = rgba_out[2] = packed; rgba_out[3] = lp_build_const_vec(gallivm, type, 1.0f); return; } /* * Try calling lp_build_fetch_rgba_aos for all pixels. * Should only really hit subsampled, compressed * (for s3tc srgb too, for rgtc the unorm ones only) by now. * (This is invalid for plain 8unorm formats because we're lazy with * the swizzle since some results would arrive swizzled, some not.) */ if ((format_desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) && (util_format_fits_8unorm(format_desc) || format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC) && type.floating && type.width == 32 && (type.length == 1 || (type.length % 4 == 0))) { struct lp_type tmp_type; struct lp_build_context bld; LLVMValueRef packed, rgba[4]; const struct util_format_description *flinear_desc; const struct util_format_description *frgba8_desc; unsigned chan; lp_build_context_init(&bld, gallivm, type); /* * Make sure the conversion in aos really only does convert to rgba8 * and not anything more (so use linear format, adjust type). */ flinear_desc = util_format_description(util_format_linear(format)); memset(&tmp_type, 0, sizeof tmp_type); tmp_type.width = 8; tmp_type.length = type.length * 4; tmp_type.norm = TRUE; packed = lp_build_fetch_rgba_aos(gallivm, flinear_desc, tmp_type, aligned, base_ptr, offset, i, j, cache); packed = LLVMBuildBitCast(builder, packed, bld.int_vec_type, ""); /* * The values are now packed so they match ordinary (srgb) RGBA8 format, * hence need to use matching format for unpack. */ frgba8_desc = util_format_description(PIPE_FORMAT_R8G8B8A8_UNORM); if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) { assert(format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC); frgba8_desc = util_format_description(PIPE_FORMAT_R8G8B8A8_SRGB); } lp_build_unpack_rgba_soa(gallivm, frgba8_desc, type, packed, rgba); /* * We converted 4 channels. Make sure llvm can drop unneeded ones * (luckily the rgba order is fixed, only LA needs special case). */ for (chan = 0; chan < 4; chan++) { enum pipe_swizzle swizzle = format_desc->swizzle[chan]; if (chan == 3 && util_format_is_luminance_alpha(format)) { swizzle = PIPE_SWIZZLE_W; } rgba_out[chan] = lp_build_swizzle_soa_channel(&bld, rgba, swizzle); } return; } /* * Fallback to calling lp_build_fetch_rgba_aos for each pixel. * * This is not the most efficient way of fetching pixels, as we * miss some opportunities to do vectorization, but this is * convenient for formats or scenarios for which there was no * opportunity or incentive to optimize. * * We do NOT want to end up here, this typically is quite terrible, * in particular if the formats have less than 4 channels. * * Right now, this should only be hit for: * - RGTC snorm formats * (those miss fast fetch functions hence they are terrible anyway) */ { unsigned k; struct lp_type tmp_type; LLVMValueRef aos_fetch[LP_MAX_VECTOR_WIDTH / 32]; if (gallivm_debug & GALLIVM_DEBUG_PERF) { debug_printf("%s: AoS fetch fallback for %s\n", __FUNCTION__, format_desc->short_name); } tmp_type = type; tmp_type.length = 4; /* * Note that vector transpose can be worse compared to insert/extract * for aos->soa conversion (for formats with 1 or 2 channels). However, * we should try to avoid getting here for just about all formats, so * don't bother. */ /* loop over number of pixels */ for(k = 0; k < type.length; ++k) { LLVMValueRef index = lp_build_const_int32(gallivm, k); LLVMValueRef offset_elem; LLVMValueRef i_elem, j_elem; offset_elem = LLVMBuildExtractElement(builder, offset, index, ""); i_elem = LLVMBuildExtractElement(builder, i, index, ""); j_elem = LLVMBuildExtractElement(builder, j, index, ""); /* Get a single float[4]={R,G,B,A} pixel */ aos_fetch[k] = lp_build_fetch_rgba_aos(gallivm, format_desc, tmp_type, aligned, base_ptr, offset_elem, i_elem, j_elem, cache); } convert_to_soa(gallivm, aos_fetch, rgba_out, type); } } -- 1.8.3.1