
Intel740™ Graphics Accelerator
Software Developer’s Manual

September 1998

Order Number: 290617-003



Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual 
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability 
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to 
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not 
intended for use in medical, life saving, or life sustaining applications. 

Intel may make changes to specifications and product descriptions at any time, without notice.

The Intel740 graphics accelerator may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available upon request.

I2C is a two-wire communications bus/protocol developed by Philips.  SMBus is a subset of the I2C bus/protocol and was developed by Intel.  
Implementations of the I2C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including Philips Electronics N.V. and 
North American Philips Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

                                  http://www.intel.com
                                  or call 1-800-548-4725

Copyright © Intel Corporation, 1997-1998

*Third-party brands and names are the property of their respective owners.



Contents
1 Introduction ..........................................................................................................1-1

1.1 About This Manual ........................................................................................1-1
1.2 Intel740™ Graphics Accelerator Features....................................................1-2
1.3 Related Documents ......................................................................................1-3

2 Hardware Capabilities ......................................................................................2-1

2.1 Architectural Overview ..................................................................................2-2
2.1.1 3D Engine ........................................................................................2-2
2.1.2 2D Engine ........................................................................................2-6
2.1.3 Video Module Interface (VMI) ..........................................................2-6
2.1.4 Digital TV Out...................................................................................2-7
2.1.5 Display .............................................................................................2-7

2.2 3D Capabilities..............................................................................................2-8
2.2.1 3D Pipeline.......................................................................................2-8
2.2.2 3D Primitives..................................................................................2-11
2.2.3 Data Formats .................................................................................2-17
2.2.4 Surface Color Attributes.................................................................2-17

2.2.4.1 Fogging .............................................................................2-17
2.2.4.2 Specular Highlighting ........................................................2-19
2.2.4.3 Alpha Blending..................................................................2-20
2.2.4.4 Alpha Testing ....................................................................2-23
2.2.4.5 Color Dithering ..................................................................2-23
2.2.4.6 Shading.............................................................................2-24
2.2.4.7 Stippled Pattern ................................................................2-25

2.2.5 Texture Map Attributes...................................................................2-25
2.2.5.1 Texture Map Formats........................................................2-26
2.2.5.2 Texture Map Blending.......................................................2-29
2.2.5.3 Texture Map Color Keying ................................................2-31
2.2.5.4 Texture Wrapping Formats ...............................................2-33
2.2.5.5 Texture Map Filtering ........................................................2-34
2.2.5.6 Texture Mipmapping .........................................................2-36

2.2.6 Drawing Formats............................................................................2-38
2.2.7 Buffers............................................................................................2-38

2.2.7.1 Double and Triple Buffering ..............................................2-39
2.2.7.2 Z-Buffering ........................................................................2-39

2.2.8 Antialiasing.....................................................................................2-40
2.2.9 Back Face Culling ..........................................................................2-41

2.3 2D Capabilities............................................................................................2-42
2.3.1 BitBLT Engine ................................................................................2-42

2.3.1.1 Fixed BitBLT .....................................................................2-43
2.3.1.2 Stretch BLT Engine...........................................................2-44
2.3.1.3 Color Expansion................................................................2-44

2.3.2 Hardware Cursor............................................................................2-44
2.3.3 Video Display Resolutions .............................................................2-44

2.4 Video, VBI, and Intercast Capabilities.........................................................2-46
2.4.1 Video Capture Port ........................................................................2-46

2.4.1.1 Overview ...........................................................................2-46
2.4.1.2 Video Capture Programming ............................................2-47
Intel740™ Graphics Accelerator Software Developer’s Manual iii



2.4.2 Video Overlay ................................................................................2-49
2.4.2.1 Overview...........................................................................2-49
2.4.2.2 Field Based Content .........................................................2-49

2.4.3 VBI and Intercast ...........................................................................2-49
2.4.3.1 Overview...........................................................................2-49

2.5 DVD Capabilities.........................................................................................2-50
2.5.1 Overview........................................................................................2-50
2.5.2 Hardware DVD/MPEG-2 Movie Playback......................................2-50

2.5.2.1 Software Considerations...................................................2-50
2.5.2.2 Creating a VPE Port..........................................................2-51

2.6 TV Out Interface .........................................................................................2-51
2.6.1 Overview........................................................................................2-51
2.6.2 Using TV Out with Copy Protection ...............................................2-52

2.6.2.1 Enabling Copy Protection Using SetMovieMode ..............2-53
2.6.2.2 Enabling Copy Protection Using 

VIDEOPARAMETERS (Win98) ........................................2-54
2.7 2X AGP Interface........................................................................................2-55

2.7.1 AGP Primer....................................................................................2-55
2.7.2 AGP Software Architecture............................................................2-57

2.8 BIOS Interface ............................................................................................2-58
2.9 Local Memory .............................................................................................2-58

3 Programming Environment ...........................................................................3-1

3.1 OpenGL Programming Environment ............................................................3-1
3.2 OpenGL Drivers............................................................................................3-1

3.2.1 MCD.................................................................................................3-1
3.2.2 ICD...................................................................................................3-2

3.2.2.1 Buffer Allocation..................................................................3-2
3.2.3 Geometry Operations ......................................................................3-3

3.3 DirectX Programming Environment ..............................................................3-5
3.4 Windows Display Driver ................................................................................3-6

3.4.1 Mini Display Driver ...........................................................................3-6
3.4.1.1 Structures Exported to GDI.................................................3-6

3.5 DirectDraw Display Driver Interface..............................................................3-8
3.5.1 Directdraw Hal Capabilities..............................................................3-8

3.6 Direct3D Interface.......................................................................................3-12
3.6.1 Supported Direct3D Capabilities....................................................3-12
3.6.2 Supported RenderState .................................................................3-16
3.6.3 Supported RenderPrimitives..........................................................3-18

3.7 Video Interface............................................................................................3-19
3.8 GDI Escape Interface .................................................................................3-20
iv Intel740™ Graphics Accelerator Software Developer’s Manual 



4 Performance Considerations ........................................................................4-1

4.1 Performance Strategies And Measurements ................................................4-1
4.1.1 Intel740™ Graphics Accelerator Performance Capabilities.............4-1
4.1.2 Using CPU/Intel740™ Graphics Accelerator Concurrency..............4-2
4.1.3 Performance Test Results ...............................................................4-3

4.1.3.1 Raster Speed Test Method .................................................4-3
4.1.3.2 Implications and Analysis....................................................4-9

4.1.4 Special Performance Considerations.............................................4-11
4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers .....................4-11
4.1.4.2 OpenGL Display Lists vs. Vertex Buffers..........................4-12
4.1.4.3 Triangle Packet Size .........................................................4-13
4.1.4.4 Texture Sizes ....................................................................4-15
4.1.4.5 Palette Changes ...............................................................4-15
4.1.4.6 Untiled Textures for Procedural Texture Animation ..........4-16
4.1.4.7 High Performance Transparency ......................................4-17
4.1.4.8 Screen Resolutions...........................................................4-18

4.1.5 Budgeting CPU Clock Cycles ........................................................4-18
4.1.6 Video Performance ........................................................................4-19

4.2 Other Programming Tips.............................................................................4-21
4.2.1 Texture and Surface Effects ..........................................................4-21

4.2.1.1 Texture Formats................................................................4-21
4.2.1.2 Texture Sizes ....................................................................4-22
4.2.1.3 Texture Storage ................................................................4-22
4.2.1.4 Animated Texture Effects..................................................4-22
4.2.1.5 Multi-pass Texture Effects ................................................4-23

4.2.2 Software Strategies........................................................................4-23
4.2.2.1 Using Z-Buffering ..............................................................4-24
4.2.2.2 Using Triple-Buffering .......................................................4-24
4.2.2.3 Using Antialiasing .............................................................4-24
4.2.2.4 Minimizing State Transitions .............................................4-24
4.2.2.5 Dynamic AGP Buffer Placement .......................................4-25
4.2.2.6 Using Texture Palettes......................................................4-25
4.2.2.7 Using Mipmapping ............................................................4-25
4.2.2.8 Optimal Artist Geometry Design .......................................4-26
4.2.2.9 Optimal Artist Texture Design for Trilinear Filtering ..........4-26
4.2.2.10Using Color/chroma Keying on Top of Alpha 

Blended Textures..............................................................4-26
4.2.2.11Avoiding Stippling Errors...................................................4-27
4.2.2.12Avoiding Flipping Errors....................................................4-27
4.2.2.13Texture Sorting Is Not Required .......................................4-27

4.3 OpenGL Programming Implementation ......................................................4-27
4.3.1 OpenGL Feature Classification......................................................4-27
4.3.2 Feature Overview...........................................................................4-29
4.3.3 OpenGL Operation.........................................................................4-31

4.3.3.1 Begin/End Paradigm .........................................................4-31
4.3.3.2 Vertex Specification ..........................................................4-31
4.3.3.3 Vertex Arrays ....................................................................4-31
4.3.3.4 Rectangles ........................................................................4-31
4.3.3.5 Coordinate Transformation ...............................................4-31
4.3.3.6 Clipping .............................................................................4-31
4.3.3.7 Current Raster Position.....................................................4-31
4.3.3.8 Colors and Coloring ..........................................................4-32
Intel740™ Graphics Accelerator Software Developer’s Manual v



4.3.4 Rasterization..................................................................................4-32
4.3.4.1 Antialiasing........................................................................4-32
4.3.4.2 Points ................................................................................4-32
4.3.4.3 Line Segments ..................................................................4-32
4.3.4.4 Polygons ...........................................................................4-32
4.3.4.5 Pixel Rectangles ...............................................................4-32
4.3.4.6 Bitmaps.............................................................................4-32
4.3.4.7 Texturing...........................................................................4-32
4.3.4.8 Fog....................................................................................4-33
4.3.4.9 Antialiasing Application .....................................................4-33

4.3.5 Fragments And The Frame Buffer .................................................4-33
4.3.5.1 Per-Fragment Operations .................................................4-33
4.3.5.2 Whole Framebuffer Operations.........................................4-33
4.3.5.3 Drawing, Reading, and Copying Pixels.............................4-33

4.3.6 Special Functions ..........................................................................4-34
4.3.7 State And State Requests .............................................................4-34
4.3.8 GL Command Summary ................................................................4-34

A Appendix A.  Creating a VPE Port Sample ............................................. A-1

Glossary ....................................................................................................Glossary-1

Index ................................................................................................................. Index-1
vi Intel740™ Graphics Accelerator Software Developer’s Manual 



Figures

2-1 System Block Diagram with Intel740™ Graphics Accelerator ......................2-2
2-2 The Intel740™ Graphics Accelerator Architectural Interfaces ......................2-3
2-3 The Intel740™Graphics Accelerator Implementation of Sideband 

Addressing ....................................................................................................2-4
2-4 Batch Processing on the Intel740™ Graphics Accelerator—A 

Conceptual View ...........................................................................................2-4
2-5 The Intel740™ Graphics Accelerator’s Ability to Execute Textures 

Directly From AGP Memory ..........................................................................2-5
2-6 The Intel740™ Graphics Accelerator Functioning as Two Memory 

Controllers.....................................................................................................2-5
2-7 3D Pipeline for DirectX..................................................................................2-9
2-8 3D Pipeline for OpenGL..............................................................................2-10
2-9 Triangle as the Intel740™ Graphics Accelerator Driver Sees It .................2-12
2-10 Effects of Fogging Off vs Fogging On.........................................................2-18
2-11 Effects of Using Specular Highlighting........................................................2-19
2-12 Effects of Using Alpha Blending..................................................................2-21
2-13 Effects of Flat Shading vs. Gouraud Shading .............................................2-24
2-14 Getting 1.3 Gbytes of Concurrent Throughput with the Intel740™ 

Graphics Accelerator ..................................................................................2-26
2-15 A Color Keyed Splash.................................................................................2-32
2-16 Texture Clamp Mode ..................................................................................2-33
2-17 Point Filtering VS. Bilinear Filtering ............................................................2-35
2-18 An Example of Five Levels of Mipmapped Texture ....................................2-36
2-19 Z-Buffering Off vs. Z-Buffering On ..............................................................2-39
2-20 Effects of Antialiasing..................................................................................2-41
2-21 BLT Engine Block Diagram and Data Paths ...............................................2-43
2-22 Intel740™ Graphics Accelerator Video Capture System Diagram .............2-47
2-23 Data Flow for DVD Playback ......................................................................2-50
2-24 Windows* TV Output Control Software Structure .......................................2-52
2-25 Intel740™ Graphics Accelerator Connects to System Memory 

Over AGP....................................................................................................2-56
2-26 New Services in Windows Work with DirectDraw to Support AGP 

Applications.................................................................................................2-57
3-1 MCD Architecture..........................................................................................3-1
3-2 ICD Architecture............................................................................................3-2
3-3  Intel740™ Graphics Accelerator Software Architecture...............................3-5
4-1 Intel740™ Graphics Accelerator/CPU Usage Model ....................................4-2
4-2 Improper Usage Model .................................................................................4-2
4-3 RasM Intel740™ Graphics Accelerator/CPU Usage Model..........................4-3
4-4 RasM Pseudo-Code......................................................................................4-4
4-5 Basic Feature Sweeps ..................................................................................4-6
4-6 Advanced Feature Sweeps...........................................................................4-7
4-7 Full Feature Sweeps .....................................................................................4-8
4-8 Performance vs. Percent Z Occlusion ........................................................4-10
4-9 Performance of DrawPrimitive vs. Execute Buffer ......................................4-11
4-10 Performance of Display Lists vs. Vertex Buffers.........................................4-12
4-11 D3D Performance vs. Buffer Size (Duty Cycle) ..........................................4-13
4-12 OpenGL Performance vs. Buffer Size (Duty Cycle)....................................4-14
4-13 Performance vs. Total Packet Size.............................................................4-14
4-14 Performance vs. Texture Size.....................................................................4-15
Intel740™ Graphics Accelerator Software Developer’s Manual vii



4-15 Performance vs. Palette Changes ..............................................................4-16
4-16 Performance with Untiled Textures.............................................................4-17
4-17 Performance vs. Transparency...................................................................4-18
4-18 Performance vs. Screen Resolution ...........................................................4-18
4-19 Available Memory Bandwidth on a Pentium® II Processor System ...........4-19
4-20 Dynamic AGP Buffer Placement.................................................................4-25

Tables

1-1 Intel740™ Graphics Accelerator Feature Summary .....................................1-2
2-1 Data Formats ..............................................................................................2-17
2-2 Alpha Blend Functions for OpenGL & DirectX............................................2-22
2-3 DirectX Texture Map Blending Functions ...................................................2-30
2-4 OpenGL Texture Blend Modes and Equations ...........................................2-31
2-5 Supported DirectX Texture Wrap Formats .................................................2-33
2-6 Supported OpenGL Texture Wrap Formats................................................2-34
2-7 Pixel Formats and Buffers ..........................................................................2-38
2-8 Display Modes Supported...........................................................................2-45
3-1 Characteristics of Graphics Operations ........................................................3-3
3-2 Device Technology—dpTechnology .............................................................3-6
3-3 dwCaps—Specifies Driver-Specific Capabilities...........................................3-8
3-4 dwCaps2—Specifies More Driver-Specific Capabilities ...............................3-9
3-5 dwCKeyCaps—Color Key Capabilities .........................................................3-9
3-6 dwFXCaps—Specifies Driver-Specific Stretching and Effects 

Capabilities .................................................................................................3-10
3-7 dwPalCaps—Specifies Palette Capabilities................................................3-10
3-8 ddsCaps.dwCaps—Specifies The Capabilities Of The Surface .................3-11
3-9 General Device Capabilities .......................................................................3-12
3-10 Texture Capabilities ....................................................................................3-13
3-11 Primitive Capabilities Supported.................................................................3-13
3-12 DIRECT3D RenderState Hardware / Software Support .............................3-16
3-13 DIRECT3D RenderPrimitive Hardware / Software Support ........................3-18
3-14 VfW Capture Driver Capability....................................................................3-19
3-15 Functionality Control ...................................................................................3-20
3-16 Device Driver Debugging Control ...............................................................3-20
4-1 Result Summary ...........................................................................................4-4
4-2 Symbol Key...................................................................................................4-5
4-3 CPU Cycle Targets .....................................................................................4-19
4-4 Typical Video/Data Capture Applications ...................................................4-20
4-5 CPU Usage for Some Typical Applications ................................................4-20
4-6 Rating OpenGL Features............................................................................4-29
4-7 Included and Excluded Pre-Fragment Operations......................................4-33
4-8 Command Performance Ratings ................................................................4-34



f 
 chip 
l740 
he 
d 
ent.   

sed on 

95 
ndent 

 on 

ith 
0 
2 

ith 
s a 
r 

 
, 2D 

e 
re 
L 

ws 
Introduction 1

The Intel740™ graphics accelerator is a graphics hardware accelerator providing a variety o
features that enhance the speed and visual quality of 2D and 3D applications. The Intel740™
feature set includes DVD, video capture, VBI and intercast programming capabilities. The Inte
chip works with the OpenGL*, Microsoft DirectX*, and Win32* programming interfaces. Both t
OpenGL and the DirectX APIs give graphics applications a standard way to invoke 2D, 3D an
video graphics rendering functions and allow a software application to be hardware independ

The Intel740 graphics accelerator OpenGL driver set runs on personal computers that are ba
the Intel Architecture with Accelerated Graphics Port (AGP) support and have Microsoft 
WindowsNT* 4.0 and Windows95* with USB support or newer operating systems with the 
OpenGL 1.1 application programming interface (API). For WindowsNT 4.0 (or newer), the 
OpenGL driver set is based on the Mini Client Driver (MCD) implementation and for Windows
with USB support or newer operating systems, the OpenGL driver set is based on the Indepe
Client Driver (ICD) implementation. The Intel740 graphics accelerator DirectX driver set runs
personal computers that are based on the Intel Architecture with AGP support and have the 
Microsoft Windows98, Windows95 with USB support, or WindowsNT 5.0 operating system w
DirectX 5.0 (or newer) and Win32 programming interfaces. This manual presents the Intel74
graphics accelerator accelerated functions that are callable from OpenGL, DirectX and Win3
application programs. 

1.1 About This Manual 

This manual is intended for graphics tool or application programmers who are experienced w
writing 2D, 3D, or video graphics applications. The manual assumes that the programmer ha
working knowledge of the vocabulary and principles of graphics applications. It is intended fo
programmers who plan to use the DirectX, OpenGL and Win32 software API interfaces.

Chapter 1, “Introduction” — introduces the Intel740 chip features and API support. 

Chapter 2, “Hardware Capabilities” — provides a hardware system overview and reviews the
hardware functionality of the Intel740 chip. This chapter describes in detail the 3D rendering
display and video capabilities. 

Chapter 3, “Programming Environment” — describes the OpenGL and DirectX APIs for the 
Windows95, Windows98, and WindowsNT operating environments. 

Chapter 4, “Performance Considerations” — discusses programming approaches to maximiz
performance. Throughput, duty cycle, and memory bandwidth sensitivities on performance a
addressed. Programming tips and strategies for using the Intel740 chip are provided. OpenG
performance guidelines are also discussed.

Appendix A, “Creating a VPE Port Sample” — is a complete listing of sample code which sho
the user how to create a VPE port.
Intel740™ Graphics Accelerator Software Developer’s Manual 1-1



Introduction

0 
zed 
1.2 Intel740™ Graphics Accelerator Features

This section offers a brief overview of the most prominent Intel740 chip features. The Intel74
graphics controller may contain design defects or errors known as errata. Current characteri
errata are available on request. 

Table 1-1. Intel740™ Graphics Accelerator Feature Summary

HYPER PIPELINED ARCHITECTURE 2D & DISPLAY FEATURES

• Direct Memory Execution (DME) • Display Resolution: 640x480x8 up to 
1280x1024x16 @ 56Hz– 85Hz Refresh Rate

• 0.85 Mega-Triangles/Second Peak† • Hardware Cursor 

• 425-500K Triangles/Second Full Featured 
Sustained 3D Performance† • Hardware Overlay

• 45-55 Mega-Pixels/Second Full Features ( >140 
Pixel Triangles) Sustained 3D Performance† • Blitter Engine 

• Full Sideband Accelerated Graphics Port •  Color Expansion

• Parallel Execution

• Optimized for the Intel® 440LX AGPset

3D FEATURES VIDEO IN/OUT FEATURES

• Z-Buffering • Programmable Video Output Characteristics 
(VGA, SVGA, NTSC, PAL) 

• Back Face Culling • Video Capture Support (16- or 8- bit Uni-
Directional Capture Port) 

• Antialiasing • Scaling of the Full Motion Video Data 

• Flat and Gouraud Shading • Full Motion Video Overlaid with Frame Buffer 

• Specular Highlighting • Intercast & VBI Support 

• Fog with RGB Components • MPEGII DVD Capability

• Color Alpha Blending 

• Color Dithering 

• Stippling or “Screen Door” transparency 

• Texture Color Keying 

• Per Pixel Perspective Correct Texture Mapping 

• Mipmapping with Trilinear Filtering 1024x1024 to 
1x1

• Texture Formats: 1, 2, 4 or 8-bit palettized; ARGB 
1555 0565 4444; Compressed AYUV 0422 0555 
1544.

• Texture Memory Limited Only by System RAM

• Optimized for 800x600x16 and 640x480x16 
Display Resolution 

† See “Performance Strategies And Measurements” on page 4-1 for the system configuration used to 
generate these performance statistics.
1-2 Intel740™ Graphics Accelerator Software Developer’s Manual



Introduction

; 

995

 

1.3 Related Documents

Refer to the following materials for information outside the scope of this document.

• Intel740™ Graphics Accelerator Hardware Specification Update

• Intel740™ Graphics Accelerator Software Specification Update

• Intel740™ Graphics Accelerator Datasheet (order number 290618)

• Silicon Graphics OpenGL* SDK

• OpenGL Programming Guidelines, Second Edition; Woo, Mason; Neider, Jackie; Davis, Tom
Addison-Wesley Developer Press; 1997.

• The OpenGL Graphics System: A Specification (Version 1.1), by Silicon Graphics Inc., 1

• OpenGL Reference Manual, Second Edition, by OpenGL ARB, Addison-Wesley, 1997

• OpenGL Programming Guide, Second Edition, by OpenGL ARB, Addison-Wesley, 1997

• Computer Graphics Principles and Practice, by Foley, van Dam, Feiner and Hughes, 2nd
edition in C, Addision-Wesley, 1997

• Microsoft DirectX* Media 5.0 SDK

• Win32 SDK
Intel740™ Graphics Accelerator Software Developer’s Manual 1-3





pture 
one 
ussed 
Hardware Capabilities 2

Optimized for the new Accelerated Graphics Port (AGP), the Intel740™ chip delivers high 
performance in 2D and 3D graphics rasterization. In addition, the Intel740 chip has a video ca
port that allows easy hookup to video conferencing systems such as POTS (Plain Old Teleph
Set) video conferencing applications and Intercast technology. Each hardware feature is disc
in the following sections:

• “Architectural Overview” on page 2-2

• “3D Capabilities” on page 2-8

• “2D Capabilities” on page 2-42

• “Video, VBI, and Intercast Capabilities” on page 2-46

• “DVD Capabilities” on page 2-50

• “TV Out Interface” on page 2-51

• “2X AGP Interface” on page 2-55

• “BIOS Interface” on page 2-58

• “Local Memory” on page 2-58
Intel740™ Graphics Accelerator Software Developer’s Manual 2-1



Hardware Capabilities

the 
 
D 

 
r 

hics 

the 
y 
 
40™ 

cs 
2.1 Architectural Overview

The Intel740™ graphics accelerator is a highly integrated graphics accelerator designed for 
Accelerated Graphics Port (AGP). Its architecture consists of dedicated multi-media engines
executing in parallel to deliver high performance 3D, 2D and video capabilities. The 3D and 2
engines are managed by the 3D/2D pipeline preprocessor allowing them a sustained flow of
graphics data. The Intel740™ graphics accelerator also includes dedicated video engines fo
support of video conferencing and other video applications.

2.1.1 3D Engine

The Intel740™ graphics accelerator is capable of delivering a high rate of sustained 3D grap
performance with full 3D feature set functionality. This constant high level of performance is 
delivered through the Intel740™ graphics accelerator’s hyper-pipelined 3D architecture and 
incorporation of specific graphics architectural enhancements. With the use of Direct Memor
Execution (DME), the Intel740™ graphics accelerator fully utilizes the bandwidth of AGP and
memory, benefiting the heavy data demands of 3D. DME is a technique that allows the Intel7
graphics accelerator to store and execute textures in system memory instead of local graphi
memory. This provides high levels of performance and unlimited texture sizes.

Figure 2-1. System Block Diagram with Intel740™ Graphics Accelerator

Host Bus

Host Bridge
(e.g., 82443LX/BX)

Main
Memory

Pentium® II
Processor

Primary PCI Bus

(PCI Bus #0)

PCI Slots

Pentium® II
Processor

2X AGP Bus
Intel740™
Graphics

Accelerator

Local Memory
(2-8 MB)

(SDRAM/SGRAM,
66 to 100 MHz)

Display

TV

Encoder

Video BIOS

Intel740™ Graphics Accelerator Card or Subsystem

sys_blk2.vsd

ISA Bus

System Mgnt (SM) Bus

IO
APIC

PCI-to-ISA
Bridge

(e.g., 82371SB
PIIX4)

ISA Slots

System BIOS

2 IDE Ports
(Ultra DMA/33)

2 USB
Ports

USB

USB

Decoder

Video Input Device
(e.g., Camera, VCR)

DVD Chip Audio
2-2 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

erator 
ral 
sistent 

 of 
uality 

™ 
nd 
ted 
 
th AGP 

quests 
r to 
ossible. 
Architectural enhancements within the 3D pipeline ensure that the Intel740™ graphics accel
uses this data in the most efficient way possible. Parallel Data Processing (PDP) allows seve
commands to be executed at the same time in the graphics pipeline. This translates into con
high-performance regardless of the number of features enabled in a scene. Precise-Pixel 
Interpolation (PPI) contributes to the hyper-pipelined 3D quality with the Intel740™ graphics 
accelerator’s unique texture engine that delivers precise accuracy in interpolation operations
pixel values and color values. This detailed pixel processing maintains a high level of image q
in every scene.

The DME architecture means that full 2X AGP implementation is integrated into the Intel740
graphics accelerator with sideband operations supporting Type 1, Type 2, and Type 3 sideba
cycles. This allows 533 MB/s peak data transfers. Type 3 support permits textures to be loca
anywhere in the 32-bit system memory address space. Deep buffering allows the Intel740™
graphics accelerator to receive data at this high rate and handle any latencies associated wi
transactions. 

Sideband addressing gives the Intel740™ graphics accelerator the ability to issue multiple re
without having to wait for data to be returned. This allows the Intel740™ graphics accelerato
achieve the highest possible sustained data transfer rates across 2X AGP and makes DME p

Figure 2-2. The Intel740™ Graphics Accelerator Architectural Interfaces

3D/2D P ipe l ine  Preprocessor

3D P ipe l ine 2D P ipe l ines

Video
Eng ines

TV Out

R A M D A C

Local  Memory Inter face

Host  Port

Loca l  Memory

T V
Encoder

D isp lay

2X AGP Inter face PCI Interface

A G P PCI  Bus

Video Port

I2C
Intel740™ Graphics Accelerator Software Developer’s Manual 2-3



Hardware Capabilities

 
es up 
ssing 
gles 

y 
ting 

s 
ined 
To provide the highest level of system concurrency and performance the Intel740™ graphics
accelerator is optimized for a batch processing mode of triangle delivery. Batch processing fre
the CPU for intelligent 3D gaming and more complex geometry processing. This batch proce
allows the CPU to place a “batch” of triangles in memory and begin on another batch of trian
without the need to perform handshaking with the Intel740™ graphics accelerator. 

The DME capabilities of the Intel740™ graphics accelerator maximize the amount of memor
available for rendering (Figure 2-5). The Intel740™ graphics accelerator is capable of execu
directly from AGP memory. This “direct execution” avoids the “thrashing” of local memory 
associated with an architecture that must load local memory from AGP or system memory. A
such, textures can be executed directly from AGP memory allowing performance to be susta
even when the texture footprint increases.

Figure 2-3. The Intel740™Graphics Accelerator Implementation of Sideband Addressing

Max imum Throughput  Wi th  S ideband Imp lementa t ion

Non S ideband Implementa t ion

Sideband

Data  Path

Reques t Da ta Reques t Da ta

Reques t Reques t Reques t Reques t

Da ta Da ta Da ta Da ta

Time

Reques t

Figure 2-4.  Batch Processing on the Intel740™ Graphics Accelerator—A Conceptual View 

Batch Processing

CPU

1 2 3Intel740

Remaining CPU Time

1st Batch

4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2nd Batch

321 4 5 6 7 8 9

Increasing Time

Non-Batched Processing

Intel740

CPU

1 2 3

5 Remaining CPU Time

4

1 2 3 4

5

6

6

7

7

8

8

9

8

Stalled

CPU Time

Stalled Graphics
Processing Time
2-4 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

al 
is 
 two 
ports 
 
rce and 
As Figure 2-6 indicates, the Intel740™ graphics accelerator is capable of rendering from loc
memory while textures are being executed from AGP memory through parallel arbitration. Th
arbitration allows a combined memory peak bandwidth of 1.3 GB/s. The capability to support
open pages in local memory coupled with an additional memory channel in AGP memory sup
the 3D rendering model of color (front/back buffers), z, and textures. The Intel740™ graphics
accelerator also supports 2D rendering through the use of three raster operands (pattern, sou
destination). 

Figure 2-5. The Intel740™ Graphics Accelerator’s Ability to Execute Textures Directly From 
AGP Memory 

Figure 2-6. The Intel740™ Graphics Accelerator Functioning as Two Memory Controllers 

Pentium® II
Processor

440LX
AGPset

Intel740

Local
Memory

System
and AGP
Memory

Textures

2X AGP

Memory
Interface
(64-Bit)

Pentium® II
Processor

440LX
AGPset

Intel740

Local Memory

System
and AGP
Memory2X AGP

Memory
Interface
(64-Bit)

Textures

Destination

Color Buffer/
Display Buffer

Source
Intel740™ Graphics Accelerator Software Developer’s Manual 2-5



Hardware Capabilities

quested 
g 

a 

 
 
tput 
ncies 
e of 

r 
T) 

n 

Port 
tion. 
from a 
 as 
ideo 
 

Included in the Intel740™ graphics accelerator’s architecture are dedicated 3D pipeline 
enhancements. These enhancements are designed to manage the way in which 3D data is re
from memory and then used within the compute engine. While parallelism is employed amon
each of the Intel740™ graphics accelerator’s engines, the 3D pipeline calculates 3D data in 
highly parallel fashion. With this architecture, the 3D rasterizer is able to compute four fully 
textured, shaded, fogged and Z Buffered pixels per clock. The 3D pipeline requests data from
memory so that memory locality is maximized, regardless of triangle size or orientation. This
results in fewer page misses, higher cache efficiency, and a highly sustained 3D graphics ou
independent of the complexity of the 3D scene being rendered. By combining memory efficie
and processing data efficiencies, the Intel740™ graphics accelerator is capable of a high rat
sustained 3D performance. 

2.1.2 2D Engine

The Intel740™ graphics accelerator’s 64-bit BitBLT engine provides hardware acceleration fo
many common Windows operations. There are two primary BitBLT functions: Fixed BitBLT (BL
and Stretch BitBLT (STRBLT). The term BitBLT refers to block transfers of pixel data betwee
memory locations. Use of the BLT engine accelerates the Graphical User Interface (GUI) of 
Microsoft* Windows. Hardware is included for all 256 Raster Operations (ROPs) defined by 
Microsoft*, including transparent BitBLT. The BLT engines can be used for various functions 
including: 

• Moving rectangular blocks of data between memory locations

• Pixel format conversion

• Data Alignment

• Performing logical operations

2.1.3 Video Module Interface (VMI)

The Intel740™ graphics accelerator VMI consists of a Video Port and a Host Port. The Host 
provides an enhanced VMI 1.4 Mode B Port. The enhancements allow burst modes of opera
The Intel740™ graphics accelerator Video Port is used to receive decompressed video data 
DVD chip or video data from a Video Decoder chip. A CCIR601 digital interface is supported
the primary capture standard. Using both the host and video ports, DVD, TV, Intercast, and v
capture can be achieved. Use of the Intel740™ graphics accelerator overlay capability allows
images from the capture engine to be displayed while being captured.
2-6 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

andard 
at. 

onitor. 
port 
s. 

ayed 
f 

amma 
2.1.4 Digital TV Out

The Intel740™ graphics accelerator TVout port provides a digital output interface to either a 
television or monitor. The interface has a 12-bit data bus and connects to a television via a st
TV encoder chip (e.g., a Rockwell* BT869). Output to the encoder is in digital 24-bit RGB form
The following non-interlaced resolutions are supported:

• 320x200

• 320x240

• 640x400

• 640x480

• 720x480

• 720x576

• 800x600

2.1.5 Display

The display function contains a RAM-based Digital-to-Analog Converter (RAMDAC) that 
transforms the digital data from the graphics and video subsystems to analog data for the m
The Intel740™ graphics accelerator’s integrated 220 MHz RAMDAC provides resolution sup
up to 1600 x 1200. Circuitry is incorporated to limit the switching noise generated by the DAC
Three 8-bit DACs provide the R, G, & B signals to the monitor. Sync signals are properly del
to match any delays from the D-to-A conversion. Associated with each DAC is a 256 pallet o
colors. The RAMDAC can be operated in either direct or indexed color mode. In Direct color 
mode, pixel depths of 15, 16, or 24 bit can be realized. Non-interlaced mode is supported. G
correction can be applied to the display output. For further details on the display and display 
resolutions supported see Section 2.3.3, “Video Display Resolutions” on page 2-44.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-7



Hardware Capabilities

D 
stages. 
on 
olor 
ction 
g 

onal 
nce 

ct 

led for 
ce 

being 
res 
 in 
ory 

n. 

, as 
ure.
2.2 3D Capabilities

While the API or software application takes care of the geometry and lighting stages of the 3
pipeline, the Intel740™ graphics accelerator enables hardware acceleration of the rendering 
In the DirectX and OpenGL 3D Pipeline diagrams (Figure 2-7 and Figure 2-8), the rasterizati
stage of the 3D pipeline consists of the Setup EngineScan Converter,Texture Pipeline, and C
Calculator Depth Buffer Test. These four modules comprise the rendering engine and this se
discusses all of the rendering features associated with the 3D hardware including the followin
subsections for both OpenGL and DirectX:

• “3D Pipeline” (below)

• “3D Primitives” on page 2-11

• “Data Formats” on page 2-17

• “Surface Color Attributes” on page 2-17

• “Texture Map Attributes” on page 2-25

• “Drawing Formats” on page 2-38

• “Buffers” on page 2-38

• “Antialiasing” on page 2-40

• “Back Face Culling” on page 2-41

2.2.1 3D Pipeline

The 3D pipeline unit in the Intel740™ graphics accelerator offers advantages over the traditi
graphics accelerators by performing 3D setup locally rather than within the CPU. This differe
allows the processor to perform more geometry calculations while the Intel740™ graphics 
accelerator performs set-up and rendering. 3D features supported include perspective corre
texture mapping, trilinear mipmapping, Gouraud shading, alpha-blending, stippling, and Z-
buffering. Depending on the application, each feature can be independently enabled or disab
various levels of performance. The Intel740™ graphics accelerator allows for high performan
when all 3D features are enabled for the entire run of the application with the only exception 
antialiasing. The Intel740™ graphics accelerator is optimized for high throughput when textu
are stored in AGP memory, otherwise known as non-local video memory. Relocating textures
main memory is also supported. Locating texture information in the AGP non-local video mem
frees up the Intel740™ graphics accelerator local frame buffer memory for graphics executio
Textures cannot be put in local video memory. Polygon antialiasing is hardware assisted by 
Intel740™ graphics accelerator.

Figure 2-7 and Figure 2-8 illustrates the DirectX and OpenGL API function calls, respectively
they are used in the 3D rasterization pipeline of the Intel740™ graphics accelerator architect
2-8 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities
Figure 2-7. 3D Pipeline for DirectX

Setup
lines and triangles

D3D*Vertex.Specular/Fog,
D3D*Vertex.RGBA

D3DRENDERSTATE_CULLMODE

D3DTLVertex, D3DLVertex, D3DVertex,

(3 verticies per triangle, 2 verticies per line)

Scan
Converter

Triangles
Lines

D3DRENDERSTATE_FILLMODE

D3DRENDERSTATE_STIPPLEENABLE Stipple
Pattern

Notes:
1.  Frame buf fe r  =  f ron t  and back  bu f fe rs
2.  Only  3D buf fers  are  shown in  loca l  memory .   Other
    data (e.g.  v ideo capture buf fer  and over lay buf fer)
    a lso res ide in  local  memory.
3 .  Textures  can be s tored in  e i ther  AGP,  or
    sys tem memory .

Frame
Buffer

Depth
Buffer

(Z-Buffer)

Local  Memory
(LM)

D3DRENDERSTATE_ANTIALIAS
Back Buffer Info.

MonoChrome

Bounding Box Expansion

D3DRENDERSTATE_
TEXTUREHANDLE

Texture Filter

Texture Pipeline

Map Lookup

non-palettized

Color Key

palettized

ChromaKey

Texture Palette Lookup

YUV-to-RGB

Texture Cache

SetColorKey()

dwColorSpaceLow
& HighValue

D3DRENDERSTATE_
WRAPU & WRAPV

D3DRENDERSTATE_
TEXTUREMIN

&TEXTUREMAG

Intel740
Interface

Alpha
Test

Fog

Dithering

Texture
Blending

Color Calculator
and

Depth Buffer Test

D3DRENDERSTATE_SRCBLEND
D3DRENDERSTATE_DESTBLEND

D3DRENDERSTATE_DITHERENABLE

Specular
Add D3DRENDERSTATE_SPECULARENABLE

D3DRENDERSTATE_FOGCOLOR

D3DRENDERSTATE_FOGENABLE

D3DRENDERSTATE_ALPHABLENDENABLE
D3DRENDERSTATE_ALPHAFUNC
D3DRENDERSTATE_ALPHAREF

Depth Buffer
Test

BlendingAlpha RGB

D3DRENDERSTATE_ZWRITEENABLE

D3DRENDERSTATE_ZFUNC

D3DRENDERSTATE_
ALPHABLENDENABLE

D3DRENDERSTATE_ZBIAS

Frame Buffer
Write enable

Z Buffer
Write Enable

Coverage
(antialiasing)

D3DRENDERSTATE_STIPPLEPATTERN

D 3 D R E N D E R S T A T E _
C O L O R K E Y E N A B L E

Color Key Index Value
SetColorKey()

D 3 D R E N D E R S T A T E _
C O L O R K E Y E N A B L E

D3DRENDERSTATE_
TEXTUREMAPBLEND

D 3 D R E N D E R S T A T E _ A N T I A L I A S

D3DRENDERSTATE_SHADEMODE

3D Pipeline for
DirectX

AGP Memory

Textures

Instructions
and Data
Intel740™ Graphics Accelerator Software Developer’s Manual 2-9



Hardware Capabilities
Figure 2-8. 3D Pipeline for OpenGL

Setup
(lines and triangles)

glCullFace()

pre lit glVertex includes Specular, Ambient and Diffuse color in RGBA
(3 verticies per triangle, 2 verticies per line)

Scan
Converter

Triangles

Lines

glPolygonMode()

glEnable(GL_POLYGON_STIPPLE)
Stipple
Pattern

Frame
Buffer

Depth
Buffer

(Z-Buffer)

Local  Memory
(LM)

glEnable(GL_POLYGON_SMOOTH)

Back Buffer Info.

MonoChrome

Bounding Box Expansion

Texel
Generation

glTexParameter(GL_TEXTURE_MIN_FILTER)

Intel740
Interface

Alpha
Test

Fog

Dithering

Texture
Blending

Color Calculator
and

Depth Buffer Test

glEnable(GL_DITHER)

glFog()

glEnable(GL_BLEND)

glBlendFunc()

glEnable(GL_ALPHA_TEST)
glAlphaFunc()

Depth
Buffer
Test

BlendingAlpha RGB

glEnable(GL_DEPTH_TEST)

glDepthFunc()

Frame Buffer
Write Enable

Z Buffer
Write Enable

Coverage
(antialiasing)

glPolygonStipple()

glTexParameter(GL_TEXTURE_WRAP_S)

glTexEnv()

g l E n a b l e ( G L _ P O L Y G O N _ S M O O T H )

glShadeMode()

glTexParameter(GL_TEXTURE_MAG_FILTER)

glTexParameter(GL_TEXTURE_WRAP_T)

3D Pipeline for
OpenGL

Notes :
1.  Frame buffer  = f ront  and back buffers
2.  Only 3D buf fers are shown in local  memory.
   Other data (e.g.  v ideo capture buf fer  and over lay
    buffer)  also reside in local  memory.
3.  Textures can be stored in e i ther  AGP, or
    system memory.

AGP Memory

Textures

Instructions
and Data
2-10 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

e 
ns 

gine 
ata 
oes 

ion 
 
s 

nd 

ging, 
lor 
lue, 
ng 
ed 

es 
h 
ith 

ng the 
her 
e 2-9 
vers 
alized 

 
ucture 
 API 
The four main modules within the 3D Pipeline are:

Setup Engine The Setup Engine performs the necessary calculations to make th
geometry data useful for the rest of the pipeline. Some of the functio
include culling, and perspective correct calculation of texture 
coordinates as they correspond to pieces of the geometry.

Scan Converter The Scan Converter performs functions in parallel with the Setup En
to read vital information such as fog, specular RGB, and blending d
and sends it on to the Texture Pipeline so that the Texture Pipeline d
not have to stop the flow of the pipeline in order to wait for this data.

Texture Pipeline The Texture Pipeline receives the texture coordinate data informat
from the Setup Engine and texture blend information from the Scan
Converter and stores this information in the texture cache. It perform
texture chroma and color key match, texture bilinear interpolation, a
YUV to RGB conversions.

Color Calc./Depth Test The Color Calculator/Depth Test is where the color data such as fog
specular RGB, texture blend, and alpha blend is processed. The Co
Calculator computes the resulting color of a pixel. The red, green, b
and alpha are combined with the corresponding components resulti
from the Texture Pipeline unit. These textured pixels are then modifi
by the specular and fog parameters to create specular highlighted, 
fogged, textured pixels which are color blended with the existing valu
in the frame buffer. Alpha and depth buffer tests are conducted whic
will determine whether the frame and depth buffers will be updated w
new pixel values.

2.2.2 3D Primitives

The 3D primitives are lines, triangles, and state variables. Pipeline flushes occur when updati
palette and stipple memories, since these are too large to allow pipelining of their data. In eit
case, all primitives rendered after a change in state variables will reflect the new state. Figur
shows the triangle data structure which is handled by the Intel740™ graphics accelerator dri
and also shows how the texture is mapped from the texture coordinate U, V space to the norm
S, T object space where perspective correction is applied to the texture as well as simulated
curvature before being mapped to the object in X, Y screen coordinates. The triangle data str
is passed to the Intel740™ graphics accelerator drivers by either the DirectX or the OpenGL
call backs.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-11



Hardware Capabilities
Figure 2-9. Triangle as the Intel740™ Graphics Accelerator Driver Sees It

x

y

Surface of Object
Calculated on Chip

Texture map
u

v

S
(U * 1/W)

T  (V * 1/W)

0

0

0
Three Corners of
Triangle on ScreenIntel740 Vertex :

struct {
float X; /* 0.0  -  2047.0  */
float Y; /* 0.0  -  1023.0  */
float Z; /* 0.0  -  1.0,  0 - 64K  */
float W ; /* 1/Z  */
struct {

unsigned char blue; /*  0  -   255  */
unsigned char green; /*  0  -  255  */
unsigned char red; /*  0  -  255  */
unsigned char alpha; /*  0  -  255  */

} dwColor;
struct {

unsigned char sblue; /*  0  -  255  */
unsigned char sgreen; /*  0  -  255  */
unsigned char sred; /*  0  -  255  */
unsigned char fog; /*  0  -  255  */

} dwSpecularColor;
float U; /*  S15.16 0 - 64K */
float V; /*  S15.16 0 - 64K */

} Triangle[3];
2-12 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

s 

he 3D 
 The 
e 
g 
e API 
on on 
ed 
Example 2-1. Sending Data to the Intel740™ Graphics Accelerator  Using DirectX

When using DirectX, the data format for a vertex which can be sent to the Intel740™ graphic
accelerator driver via a DirectX execute buffer, or by using the DrawPrimitive or 
DrawIndexedPrimitive command is a D3DTLVERTEX, D3DLVERTEX, or D3DVERTEX data 
structure. The Intel740™ graphics accelerator does the rasterization or rendering portion of t
pipe. The user must set up the appropriate lighting and transforms regardless of vertex type.
difference is that the DirectX API will know to perform lighting and transforms as preset by th
user when a D3DVERTEX is sent, or just transforms when the D3DLVERTEX is sent. Lightin
and transformation is not done by the Intel740™ graphics accelerator, but will be done by th
software in these instances. See the Microsoft DirectX 5.0 documentation for more informati
how to set up the lighting and transformations. The D3DTLVERTEX data structure is illustrat
below.
D3DTLVERTEX TYPE

 typedef struct _D3DTLVERTEX { 

    union { 

        D3DVALUE sx; // sx is the screen coordinate of the x position of the vertex

        D3DVALUE dvSX; 

    }; 

    union { 

        D3DVALUE sy  // sy is the screen coordinate of the y position of the vertex

        D3DVALUE dvSY; 

    }; 

    union { 

        D3DVALUE sz; // sz is the z position of the vertex used for z compares

        D3DVALUE dvSZ; 

    }; 

    union { 

        D3DVALUE rhw;// rhw is the 1/z value for the vertex or the reciprocal 

 //of homogeneous 

        D3DVALUE dvRHw;// w. This value is 1 divided by the distance from the

//origin to the object 

// along the z-axis.

    }; 

    union { 

        D3DCOLOR color; // color corresponds to the vertex color components of red,

//green, blue, and alpha.

D3DCOLOR dcColor; 

    }; 

    union { 

        D3DCOLOR specular; // specular corresponds to the vertex specular color

//component 

        D3DCOLOR dcSpecular; // consisting of sred, sgreen, and sblue.  The alpha of

//the specular color is used for  the fog density value.

    }; 

    union { 

        D3DVALUE tu; //  tu corresponds to the texture map horizontal component.

        D3DVALUE dvTU; 

    }; 

    union { 

        D3DVALUE tv; // tv corresponds to the texture map vertical component.

        D3DVALUE dvTV; 

    }; 

} D3DTLVERTEX, *LPD3DTLVERTEX; 
Intel740™ Graphics Accelerator Software Developer’s Manual 2-13



Hardware Capabilities

or 

ization 

e 
:

plied 

 

The Intel740™ graphics accelerator supports the following different D3DPRIMITIVETYPEs f
DrawPrimitive: 

D3DPT_POINTLIST Renders a collection of isolated points

D3D_LINELIST Renders a list of isolated straight line segments

D3DPT_LINESTRIP Renders a single polyline

D3DPT_TRIANGLELIST Renders a sequence of isolated triangles

D3DPT_TRIANGLESTRIP Renders a triangle strip

D3DPT_TRIANGLEFAN Renders a triangle fan

Below is the DirectX function prototype for DrawIndexPrimitive which is used to call the 
Intel740™ graphics accelerator driver to take the triangle data and begin the hardware raster
process.
HRESULT IDirect3DDevice2::DrawIndexedPrimitive(

D3DPRIMITIVETYPE type, 

D3DTLVERTEXTYPE D3DTLVertex,

LPVOID  VertexsListPointer, 

DWORD VertexsCount, 

LPWORD VertexsIndexList, 

DWORD VertexsIndexCount, 

DWORD DrawIndexedPrimitiveFlags);

The following code segment illustrates using DrawIndexPrimitive to send the vertex data to th
Intel740™ graphics accelerator, assuming that the triangle information is ready for rendering
HRESULT ddval

LPDIRECT3DDEVICE lpDev;

TransformVerticesTo3DView();

LightVertices();

TransformVerticesTo2DScreen();

if ((ddrval = lpDev->BeginScene()) != D3D_OK)

return FALSE;

//begining of atomic block for Direct 3D rendering

ddrval=lpDev->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 

D3DVT_TLVERTEX, 

(LPVOID)pvTLVertex,

iNumVertex, 

(LPWORD)pdwIndex, 

iNumFaces*3,

0) ; 

if (ddrval != DD_OK)

return FALSE;

//end of atomic block for Direct 3D rendering

if ((ddrval = lpDev->EndScene()) != D3D_OK)

return FALSE;

It is best to do the transformations and lighting for the entire scene before the rendering, as im
in the code segment above. Multiple triangle lists can be sent within the BeginScene() and 
EndScene() call without hampering the performance. A triangle list larger than 85 triangles is
recommended while a list of 512 triangles is optimal. See Chapter 4 for in-depth triangle list 
performance information.
2-14 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

enGL 
iate 
rtex 
e 

; 
oted 
, 
 

ify 

 four 
r 
r 

ill be 

lor, 
re 
ods 
re for 
tion is 

in(). 

s

Example 2-2. Sending Data to the Intel740™ graphics accelerator Using OpenGL

The three ways to send rendering information to the Intel740™ graphics accelerator using Op
are immediate method, vertex arrays, and display lists. This document first shows the immed
method, which is straightforward and which helps to understand the second and preferred ve
array method. The display list method is not discussed in this document; it can be found in th
OpenGL Programming Guide. This document is concerned with showing the user how to 
implement OpenGL calls which will utilize the features of the Intel740™ graphics accelerator
therefore, this manual will not discuss overall OpenGL programming methods. It should be n
that the OpenGL vertex information sent to the Intel740™ graphics accelerator will be pre-lit
which means that the RGBA component will have already included the specular, diffuse and
ambient lighting for the vertex. 

OpenGL describes vertex information a little bit differently than DirectX. For instance, to spec
an OpenGL vertex and its surface and texture attributes the following code could be used:
glBegin();

glColor*();// Set current color

glTexCoor*();// Set texture coordinates

glEdgeFlag*();// Control drawing of edges

glVertex*();// Set vertex coordinates

glEnd();

“*” specifies the type of arguments the function call will pass in the function parameters. For 
glVertex, the types conform to the following:
void glVertex{234}{sifd}[v](TYPE coords);

Where “(234)” specifies the number of coordinates from as few as two for (x,y) to as many as
for (x,y,z,w). Then the “{sifd}” portion describes the data type as either “short”, “int”, “float”, o
“double.” The next portion of the function, “{v}” is used to specify that a pointer to a vector (o
array) will be past in the parameter rather than a series of individual arguments.

It is important to send the glVertex() command last, because the information sent previously w
used to describe the vertex at this point.

To describe all of the component information of a vertex including the texture coordinates, co
and edge flags, each of the functions between the glBegin() and glEnd() may be called. Befo
making the glColor call, other calls to set the specular lighting, fogging and antialiasing meth
should be called. These calls are discussed in the 3D features section of this document whe
each feature of the Intel740™ graphics accelerator such as fogging, an OpenGL implementa
provided. The glBegin() and glEnd() are used to specify the beginning and end of an atomic 
primitive. There are different types of primitives which can be passed as arguments to glBeg
They are as follows:

GL_POINTS Renders a collection of isolated points

GL_LINES Renders a list of isolated straight line segments

GL_TRIANGLES Renders a sequence of isolated triangles

GL_LINE_STRIP Renders a single polyline

GL_TRIANGLE_STRIP Renders a triangle strip

GL_TRIANGLE_FAN Renders a triangle fan

GL_QUAD Renders a quad triangulated into individual triangles

GL_QUAD_STRIP Renders quadrilateral strips triangulated into individual triangle

GL_POLYGON Renders polygons triangulated into individual triangles
Intel740™ Graphics Accelerator Software Developer’s Manual 2-15



Hardware Capabilities

hich 
new 

tices. 

rray 
nning 
, an 
y:

. In 
s to 
eline. 
ay 
an 
When using OpenGL, the best way to send vertex data to the driver is to use vertex arrays, w
minimize the number of function calls required for one geometric object. Vertex arrays are a 
feature of OpenGL 1.1. For the Intel740™ graphics accelerator, it is best to minimize these 
function calls to improve performance and to reduce the redundant processing of shared ver
The way to use the vertex arrays is as follows:

1. Enable each array type to be used:
void glEnableClientState(Glenum array); 

Where array is one of the following symbolic constants: GL_VERTEX_ARRAY, 
GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY, 
GL_TEXTURE_COORD_ARRAY, GL_EDGE_FLAG_ARRAY.

2. Point to each array to be rendered:
void glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid 
*pointer);

void glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid 
*pointer);

void glEdgeFlAGPointer(GLsizei stride, const GLvoid *pointer);

void glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid 
*pointer);

GLint size: is the number of coordinates per vertex, which must be 2, 3, or 4.
GLenum type:is the data type (GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE).
GLsizei stride:is the byte offset between consecutive vertices (or other type).
GLvoid *pointer:points to the storage array for the vertices (or other type).

Note: There is such a thing as “intertwined” arrays where multiple types can be stored in a single a
and, therefore, can be “pointed to” using the stride variable to indicate the offset from the begi
of the first group to the beginning of the next group of the type to be pointed to. For example
intertwined array of x, y, z vertices and RGB color could be created and pointed to in this wa

static GLfloat  intertwinded[] = 

{2.0, 0.3, 2.0, 200.0, 100.0, 0.0,

2.0, 0.3, 0.0, 100.0, 100.0, 0.0,

2.0, 2.0, 0.3, 100.0, 300.0, 0.0};

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(3, GL_FLOAT,  6 * sizeof(GLfloat), intertwined);

glVertexPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), &intertwined[3]);

3. Render the data. The above calls remain on the application side of the graphics pipeline
order to send the data to the Intel740™ graphics accelerator for rendering the user need
“dereference” the arrays which cause them to be sent down the graphics processing pip
This can be done by either de-referencing a single array element from a sequence of arr
elements or from an ordered list of array elements.   The following call is used to render 
ordered list of array elements:
void glDrawArrays(GLenum mode, GLint first, GLsizei count);

GLenum mode: The primitive type.

GLint first: The start of the array to be processed

GLsizei count: The number of elements to be rendered.
glEnableClientStat(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

.

.

glEnableClientState(otherarray);

glColorPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), intertwined);

glVertexPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), &intertwined[3]);

.

.

2-16 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

d 
cts. 
e 

e 
d at 
sities 
gl*Pointer(...);

glDrawArrays(GL_TRIANGLES, 0, vertexs_count);

glDisableClientState(Glenum array);

The above call would render all of the arrays which have been enabled and pointed to.

2.2.3 Data Formats

The data value ranges are independent of the API. Table 2-1 lists each data format and the 
corresponding domain and range values.

2.2.4 Surface Color Attributes

Surface attributes are those items which allow the user to define the object’s visual quality an
which can be combined in a number of ways to create different atmospheric and lighting effe
The surface attributes which the Intel740™ graphics accelerator supports are discussed in th
following subsections:

• “Fogging” (below)

• “Specular Highlighting” on page 2-19

• “Alpha Testing” on page 2-23

• “Color Dithering” on page 2-23

• “Shading” on page 2-24

• “Stippled Pattern” on page 2-25

2.2.4.1 Fogging

Fogging adds the effect of density to the atmosphere. As an object goes farther away from th
viewer, it appears to become more “cloudy” or “foggy” than closer objects. Fogging is specifie
each vertex and is interpolated to each pixel center. If fog is disabled, the incoming color inten
are passed unchanged. Fog is linearly interpolative, with the pixel color determined by the 
following equation:

C = f * Cp + (1 - f) * Cf

where f is the fog coefficient per pixel, Cp is the polygon color, and Cf is the fog color.

Table 2-1. Data Formats

Parameters Input Format Domain Range

Vertex X, Y 32-bit Floating Point 0.0–2048 x: 0–2047

y: 0–1023 Depth (Z) 32-bit Floating Point 0.0–1.0

0–64K Texture U, V 32-bit Floating Point 0–64K

0–64K (32K) Texture W 32-bit Floating Point 0.0–1.0

1/z Color R, G, B, A Fixed 0.8 0–255

0–255 Specular Color R, G, B Fixed 0.8 0–255

0–255 Fog Factor Fixed 0.8 0–255

0–255
Intel740™ Graphics Accelerator Software Developer’s Manual 2-17



Hardware Capabilities

rn 
d 
lue 

vertex 

 and 

 API. 

ues or 

og 
Example 2-3. Enabling Fogging with DirectX

The following code shows how to enable fogging using the DirectX API. The first step is to tu
fogging on by setting the “D3DRENDERSTATE_FOGENABLE” state to “TRUE”.   The secon
step is to set the color of the fog as shown below where D3DCOLOR has a red, green and b
value that will correspond to the color of the fog.
SetRenderState(D3DRENDERSTATE_FOGENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_FOGCOLOR, <D3DCOLOR>);

The density of the fog is specified by setting the alpha component of the specular value of a 
as shown below using the D3DLVERTEX data type:
D3DLVERTEX pLVertex;

pLVertex.specular = RGBA_MAKE( sred, sgreen, sblue, FOG_DENSITY);

The density of the fog value is between 0 and 255, where 0 is dense, completely opaque fog
255 completely clear or no fog.

Example 2-4. Enabling Fogging with OpenGL

There are several steps and many choices when implementing fogging through the OpenGL
The following code shows how to set the multiple fogging values:
glEnable(GL_FOG) {  ...  };

Enables fogging; other values corresponding to the fog can be set within the braces.  
glFogi(GL_FOG_MODE, <MODE>); 

Where <MODE> is either GL_LINEAR, GL_EXP, or GL_EXP2. The GL_LINEAR flag is 
hardware accelerated with the Intel740™ graphics accelerator.
GLfloatfogColor[4] = {0.5, 0.5, 0.5, 1.0};

glFogfv(GL_FOG_COLOR, fogColor);

Sets the fog color from the values set in the fogColor array. Fog color can be set as RGB val
from a color index.
glFogf(GL_FOG_DENSITY, <VALUE>);

Sets the fog density to <VALUE> which can be a floating point number from 0.0 to 1.0. The f
density is used when calculating GL_EXP or GL_EXP2 fog values.
glFogf(GL_FOG_START, <START_VALUE>);

Figure 2-10. Effects of Fogging Off vs Fogging On
2-18 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

iew 

 

d 
erates 

h red, 
 
 blue 
™ 
Sets the start of the fog in the view. The <START_VALUE> corresponds to a “z” value in the v
and can be any floating point value within the view volume z range.
glFogf(GL_FOG_END, <END_VALUE>);

Sets the end of the fog in the view. The <END_VALUE> corresponds to the point in the view 
where the user wants fogging to end and can be a floating point value with the view volume z
range.
glHint(GL_FOG_HINT, <HINT_VALUE>);

Specifies how the fog is calculated where <HINT_VALUE> is either GL_NICEST or calculate
per pixel, or GL_FASTEST, calculated per vertex. The Intel740™ graphics accelerator accel
GL_FASTEST.

For OpenGL, the fog equations are as follows:

f = e -(density * z)  (GL_EXP)

f = e -(density*z)2 (GL_EXP2)

f = end - z/end - start (GL_LINEAR)

2.2.4.2 Specular Highlighting

Specular highlighting adds the effect of a “hot spot” on an object which corresponds to the 
shininess of the material. The specular highlight can be varied by the amount specified for eac
green, and blue component. The Intel740™ graphics accelerator has the capability to utilize
colored specular highlights which adds to the realism of a scene. For instance, if you have a
light shining on a red apple, the specular highlight would be blue in real life. With the Intel740
graphics accelerator, it is possible to create a specular highlight of any color.

Figure 2-11. Effects of Using Specular Highlighting
Intel740™ Graphics Accelerator Software Developer’s Manual 2-19



Hardware Capabilities

h 
GL 

ding 
nd alpha 
red 

 
d, Bd, 

tor for 
Example 2-5. Enabling Specular Highlighting with DirectX

The specular color of a vertex is set to red as illustrated with the following DirectX code:
D3DLVERTEX pLVertex;

pLVertex.specular = RGBA_MAKE( 255, 0, 0, FOG_DENSITY);

In order to enable the specular highlights with DirectX so that they are visible, the following 
D3DRENDERSTATE is set to true:
SetRenderState(D3DRENDERSTATE_SPECULARENABLE, TRUE);

Example 2-6. Enabling Specular Highlighting with OpenGL

Specular highlighting is added in to the color equation at the application’s lighting stage whic
formulates the RGBA color sent to the driver. To set the specular lighting component in Open
the following code may be used:
Glfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0}

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

2.2.4.3 Alpha Blending

Alpha blending adds the material property of transparency or opacity to an object. Alpha blen
requires a source red, green, blue, and alpha component and a destination red, green, blue a
component. Using these two components, for example, a glass surface on top (source) of a 
surface (destination) would allow much of the red base color to show through. The Intel740™
graphics accelerator blends the source Rs, Gs, Bs, As component with the destination Rd, G
Ad component by the following formula:

(R’, G’, B’, A’) = (RsSr + RdDr, GsSg + GdDg, BsSb +BdDb, AsSa + AdDa)

Where Sr, Sg, Sb, Sa is a blending factor for the source and Dr, Dg, Db, Da is a blending fac
the destination. 
2-20 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

, 

2. A 

 and 
Example 2-7. Enabling Alpha Blending with DirectX

To enable alpha blending with DirectX, the ALPHABLENDENABLE flag must be set to TRUE
and then a SRCBLEND and DESTBLEND flag must be specified as shown below:
SetRenderState(D3DRENDERSTATE_ALPHABLENDENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_SRCBLEND, <D3DBLEND FLAG>);

SetRenderState(D3DRENDERSTATE_DESTBLEND, <D3DBLEND FLAG>);

The D3DBLEND FLAG is ZERO, ONE, SRCCOLOR, INVSRCCOLOR, DESTCOLOR, 
INVDESTCOLOR, BOTHSRCALPHA, or BOTHINVSRCALPHA. The blending factors are 
calculated depending on the D3DBLEND FLAG according to the formulas shown in Table 2-
common implementation is to set the source flag to SRCCOLOR and the destination flag to 
INVSRCCOLOR.

Example 2-8. Enabling Alpha Blending with OpenGL

To enable alpha blending with OpenGL, the following function call is made:
glEnable(GL_BLEND);

To set the source and destination blending factors, the following call is made:
glBlendFunc(<SOURCE_FLAG>, <DESTINATION_FLAG>);

The <SOURCE_FLAG> and <DEST_FLAG> can be set to any of the flags in the chart below
the resulting blend will be what the corresponding values equate to when plugged into the 
Intel740™ graphics accelerator equation above.

Figure 2-12. Effects of Using Alpha Blending
Intel740™ Graphics Accelerator Software Developer’s Manual 2-21



Hardware Capabilities
Table 2-2. Alpha Blend Functions for OpenGL & DirectX

FLAG Source Blend Factor Destination Blend Factor

GL_ZERO

D3DBLEND_ZERO

Sr = 0

Sg = 0

Sb = 0

Sa = 0

Dr = 0

Dg = 0

Db = 0

Da = 0

GL_ONE

D3DBLEND_ONE

Sr = 1

Sg = 1

Sb = 1

Sa = 1

Dr = 1

Dg = 1

Db = 1

Da = 1

GL_SRC_COLOR

D3DBLEND_SRCCOLOR

Sr = Rs

Sg = Gs

Sb = Bs

Sa = As

GL_DST_COLOR

D3DBLEND_DESTCOLOR

Dr = Rd

Dg = Gd

Db = Bd

Da = Ad

GL_ONE_MINUS_SRC_COLOR

D3DBLEND_INVSRCCOLOR

Sr = 1-Rs

Sg = 1-Gs

Sb = 1-Bs

Sa = 1-As

GL_ONE_MINUS_DST_COLOR

D3DBLEND_INVDESTCOLOR

Dr = 1-Rd

Dg = 1-Gd

Db = 1-Bd

Da = 1-Ad

GL_SRC_ALPHA

D3DBLEND_SRCALPHA

Sr = As

Sg = As

Sb = As

Sa = As

Dr = As

Dg = As

Db = As

Da = As

GL_ONE_MINUS_SRC_ALPHA

D3DBLEND_INVSRCALPHA

Sr = 1-As

Sg = 1-As

Sb = 1-As

Sa = 1-As

Dr = 1-As

Dg = 1-As

Db = 1-As

Da = 1-As

D3DBLEND_BOTHSRCALPHA

Sr = As

Sg = As

Sb = As

Sa = As

Dr = 1-As

Dg = 1-As

Db = 1-As

Da = 1-As

D3DBLEND_BOTHINVSRCALPHA

Sr = 1-As

Sg = 1-As

Sb = 1-As

Sa = 1-As

Dr = As

Dg = As

Db = As

Da = As
2-22 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

llows 
nding, 
ha 
 buffer. 
tly.

bled. 
erator. 

 at 
 be 

reas 
and 
olor 
ned 
y four 
 be 
nt and 
2.2.4.4 Alpha Testing

The Intel740™ graphics accelerator supports the use of alpha blend testing functions. This a
the user to control how objects in the scene are alpha blended. When using source alpha ble
the user does not need to create an alpha buffer. When using source alpha blending, the alp
channel of the textures are used for the blending formulas and there is no need for an alpha
The user must remember to sort from back to front, so that the blending is performed correc

Example 2-9. Enabling Alpha Testing Functions With DirectX

To enable alpha testing functions with DirectX, the following render states are set:
SetRenderState(D3DRENDERSTATE_ALPHABLENDENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ALPHATESTENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ALPHAFUNC, <D3DCMPFUNC>);

SetRenderState(D3DRENDERSTATE_ALPHAREF, <ALPHA REF> );

Where <D3DCMPFUNC> can be set to D3DCMP_NEVER, D3DCMP_LESS, 
D3DCMP_EQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER, D3DCMP_NOTEQUAL, 
D3DCMP_GREATEREQUAL, or D3DCMP_ALWAYS. And where <ALPHA REF> is a value 
specifying a reference alpha value against which pixels are tested when alpha-testing is ena
This value is in the range of 0 to 1 and must be 8 bits or less for the Intel740™ graphics accel
The default value is 0.

Example 2-10. Enabling Alpha Testing Functions With OpenGL

To enable alpha testing functions with OpenGL, the following render states are set:
glEnable(GL_ALPHA_TEST);

glAlphaFunc(<GLFUNC>, <GLREF>);

Where <GLFUNC> is GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, 
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. <GLREF> must be between 0 and 1.

2.2.4.5 Color Dithering

Color dithering is created by a pattern of pixels which are more than one color. When looked
from a distance, the combined effect is a new color. In this manner, many different colors can
simulated by combining a few colors. Color dithering takes advantage of the human eye’s 
propensity to “average” the colors in a small area. With limited color fidelity available, large a
of “flat” colors can exist. Color dithering takes the input of color, alpha, and fog components 
converts them from 8 bits to five- or six-bit components. Color dithering simulates 256-level c
resolution by an ordered pattern of 32- or 64-level color pixels. A four-bit dither value is obtai
by addressing a 4x4 matrix with the pixel’s x and y (2 LSBs of each). The matrix repeats ever
pixels in both directions. The value obtained is appropriately shifted to align with (what would
otherwise) truncated bits of the component being dithered. It is then added with the compone
the result is truncated to the five (six for green) MSBs.

Example 2-11. Enabling Color Dithering with DirectX

To enable color dithering with DirectX do the following:
SetRenderState(D3DRENDERSTATE_DITHERENABLE, TRUE);

Example 2-12. Enabling Color Dithering with OpenGL

To enable color dithering with OpenGL do the following:
glEnable(GL_DITHER);
Intel740™ Graphics Accelerator Software Developer’s Manual 2-23



Hardware Capabilities

ons 
llows 
 types 
ing. 
 solid 
 uses 

of 
to look 
 
ularity 
2.2.4.6 Shading

The Intel740™ graphics accelerator shading attributes determine how the colors of the polyg
(triangles) are interpolated for each pixel in a surface. The Intel740™ graphics accelerator a
each of the alpha, fog, specular, and color attributes to be shaded individually. There are two
of shading performed by the Intel740™ graphics accelerator: flat shading and Gouraud shad
Flat shading makes objects appear blocky, since each polygon (triangle) face is denoted by a
color. This is because flat shading takes a specified attribute from the first passed vertex and
this attribute to cover every pixel in the polygon. Gouraud shading smooths the appearance 
adjacent polygons (triangles) so that a sphere which looked blocky flat shaded can be made 
more rounded. This is because Gouraud shading takes the three vertices of the triangle and
interpolates over the entire surface to blend the vertex colors and attributes such as fog, spec
and transparency (alpha).

Example 2-13. Enabling Shading with DirectX

To enable either flat or Gouraud shading using DirectX, the following render state is set:
SetRenderState(D3DRENDERSTATE_SHADEMODE, <D3DSHADEMODE>);

Where the shade mode is either D3D_GOURAUD or D3D_FLAT.

Example 2-14. Enabling Shading with OpenGL

To enable either flat or Gouraud shading using OpenGL, the following call can be made:
glShadeModel(<GLSHADEMODE>

Where the shade mode is either GL_SMOOTH, for Gouraud shading, or GL_FLAT for flat 
shading.

Figure 2-13. Effects of Flat Shading vs. Gouraud Shading
2-24 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

2x32 
ill be 
en to 

ing:

o 

wing:

 
f AGP 

for 
phics 
hics 
hics 
he 
“tiles” 
 

2.2.4.7 Stippled Pattern

The stipple pattern feature of the Intel740™ graphics accelerator is used to set values in a 3
pixel matrix to be either 1 or 0, where 0 means that the corresponding portion of the pattern w
rendered as a black pixel. Stippled patterns can be used when the application wants the scre
fade to black by changing the pattern to have more zeros set for each frame rendered.

Example 2-15. Enabling Stippled Patterns with DirectX

To enable stippled pattern for the Intel740™ graphics accelerator using DirectX, do the follow
SetRenderState(D3DRENDERSTATE_STIPPLEENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_STIPPLEPATTERN00, 1 OR 0);

.

.

SetRenderState(D3DRENDERSTATE_STIPPLEPATTERN31, 1 OR 0);

The default value for all of the stipple patterns is 0. When a stippled pattern is enabled and n
stipple pattern is set, the result is a black screen.

Example 2-16. Enabling Stippled Patterns with OpenGL

To enable stippled pattern for the Intel740™ graphics accelerator using OpenGL do the follo
glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(const Glubyte *StippleMatrix);

Where StippleMatrix is a pointer to a 32x32 pixel bitmap interpreted as a mask of 0s and 1s.

2.2.5 Texture Map Attributes 

The Intel740™ graphics accelerator allows virtually unlimited texture usage. This is because
textures can be stored in the AGP system memory (non-local video memory). The amount o
memory available for the application is limited by the amount of system RAM which can be 
allocated. Therefore, if a system has 32 Mbytes of RAM available, 20 Mbytes could be used 
textures. Using AGP for texture memory complements the performance of the Intel740™ gra
accelerator, since textures can be mapped directly from AGP memory to the Intel740™ grap
accelerator without using the CPU. This mapping is done in parallel with the Intel740™ grap
accelerator local video memory transfers for frame buffers. The total bandwidth enabled by t
parallel throughput is up to 1.3 Gbytes per second. The Intel740™ graphics accelerator also 
textures in AGP memory to minimize page faults and storage overhead which increases both
performance and texture space. Textures can not be put in local video memory.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-25



Hardware Capabilities

lerator 

. 
sted 
l in a 
tries. 
rposes, 
pports 
There are many ways to manipulate surface textures with the many Intel740™ graphics acce
Texture Map Attributes. The categories are described in the following subsections:

• “Texture Map Formats” on page 2-26

• “Texture Map Blending” on page 2-29

• “Texture Map Color Keying” on page 2-31

• “Texture Wrapping Formats” on page 2-33

• “Texture Map Filtering” on page 2-34

• “Texture Mipmapping” on page 2-36

2.2.5.1 Texture Map Formats

The Intel740™ graphics accelerator supports up to 16 bits of color in various texture formats
There are three ways to catalog texture types: ARGB, AYUV, or YUV. All the texture formats li
below are supported as either palettized or non-palettized. When the amount of bits per texe
texture is less than 16, the color information is stored in a palette consisting of 256 16-bit en
The texture cache is used to store previously accessed texels needed for blending or other pu
so that additional reads from memory are not needed. The Intel740™ graphics accelerator su
images whose dimensions are a power of two. The dimensions do not have to be square.

Figure 2-14. Getting 1.3 Gbytes of Concurrent Throughput with the Intel740™ Graphics 
Accelerator

Front Buffer
0.6 Mbyte

Textures

0 .533
Gbyte System Memory

(AGP Por t )

Intel740™ Graphics
Accelerator

Intel® 440LX
AGPset

Pent ium ® II
Processor

0.533 Gbyte
Bandwidth

0 .533
Gbyte

6 4 0 x 4 8 0 x 1 6 6 4 0 x 4 8 0 x 1 6 6 4 0 x 4 8 0 x 1 6

0 .80
Gbyte

2 Mbyte Local
Video

Memory

0.80 Gbyte
Bandwidth

Back
Buffer

0.6 Mbyte

Z-Buffer
0.6 Mbyte
2-26 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities
DirectX Texture Map Formats supported:

• 1555ARGB 

• 0565ARGB (DirectX default for palettized)

• 4444ARGB (DirectX default for palettized with alpha)

• 422YUV (UV is 2’s complement) (YUY2 FOURCC)

• 422YUV (UV is excess 128) (YUY2 FOURCC)

• 0555AYUV (texture data compression)

• 1544AYUV (texture data compression)

• Palettized 1, 2, 4, and 8 bit.

OpenGL Texture Map Formats supported:

• RGB5  (0555ARGB)

• RGBA4(4444ARGB)

• RGB5_A1(1555ARGB)

Example 2-17. Creating a Texture Surface with DirectX

The following DirectX example shows how to create a 4444 ARGB texture surface in AGP 
memory:

First set the pixel format for the 4444 ARGB:
DDPIXELFORMAT ddpf;     

DDSURFACEDESC ddsd;

ddpf.dwSize = sizeof(ddpf);

ddsd.dwSize = sizeof(ddsd);

ddpf.dwRGBBitCount = 16 //Total number of bits including alpha

ddpf.dwRBitMask = 0x0F00; //Specify the masks for color components

ddpf.dwGBitMask = 0x00F0;

ddpf.dwBBitMask = 0x000F;

ddpf.dwRGBAlphaBitMask = 0xF000;

ddpf.dwFlags = DDPF_RGB; //specify the pixel format is valid

ddsd.dwFlags = DDSD_PIXELFORMAT;

Next set the correct direct draw surface capability flags and creates the surface: 
IDIRECTDRAW*lpdd;

IDIRECTDRAWSURFACE*lpTextureSurface;

HRESULT ddrval;

ddsd.dwSize = sizeof(ddsd);

ddsd.dwHeight = 128;

ddsd.dwWidth = 128;

ddsd.wFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

ddsd.ddsCaps = DDSCAPS_TEXTURE | DDSCAPS_ALLOCONLOAD | DDSCAPS_VIDEOMEMORY |

DDSCAPS_NONLOCALVIDMEM;

ddrval = lpdd->CreateSurface(&ddsd, &lpTextureSurface, NULL);
Intel740™ Graphics Accelerator Software Developer’s Manual 2-27



Hardware Capabilities

ce using 
file 

ndle 
ed:

use 
three 

wing 
e is 

f 
ure 

r 
 

self as 
Once a texture surface has been created, a palette and texture can be loaded onto the surfa
the DirectDraw sample functions DDLoadPalette and DDReLoadBitmap from the ddutil.cpp 
included in the DirectX 5.0 SDK. 

IDIRECTDRAWPALETTE *lpDDPal;
lpDDPal = DDLoadPalette(lpDD, “MyTexture.bmp”);

ddrval = lpTextureSurface->SetPalette(lpDDPal);

ddrval = DDReLoadBitmap(lpTextureSurface, “MyTexture.bmp”); 

To enable the texture for rendering, the following state change is made where the texture ha
which points to a texture surface is enabled so that a particular texture surface will be render
D3DTEXTUREHANDLE HTex;

lpTextureSurface->GetHandle(lpD3Ddevice, &HTex);

SetRenderState(D3DRENDERSTATE_TEXTUREHANDLE, &HTex);

The texture handle assigned to the texture surface is enabled.

Example 2-18. Creating a Texture Surface with OpenGL

In OpenGL 1.1, it is recommended to use texture objects. Texture objects are beneficial beca
they allow the programmer to specify which texture is active with one simple call after these 
steps are taken:

1. Generate texture names; a texture name can be any nonzero unsigned integer. The follo
call should be used when generating a texture name to ensure that a unique texture nam
created.
 glGenTextures(GLsize n, Gluint *TextureName);

This call returns a texture object pointed to through textureName. When using an array o
texture names, n corresponds to the number of unused textures names in the array of text
names.

2. The next step is to bind texture objects to texture data. The following call is used:
 glBindTexture(GLenum target, Gluint *TextureName);

This causes the texture specified by TextureName to become active where target is eithe
GL_TEXTURE_1D, or GL_TEXTURE_2D and TextureName is the same pointer used in
glGenTextures.

3. The next step creates the texture surface which will from then on, correspond to the 
textureName pointer:

glTexImage2D(GLenum <TARGET>, GLint <LEVEL>, GLint <INTERNALFORMAT>, 
Glsizei<WIDTH>, GLsize <HEIGHT>, GLint <BORDER>, GLenum <FORMAT>, GLenum 
<TYPE>, GLvoid <PIXELS>);

<TARGET> is either GL_TEXTURE_2D, or GL_PROXY_TEXTURE_2D;

<LEVEL> is 0 or the number of texture resolutions to be used

<INTERNALFORMAT> is the texture format supported by the Intel740™ graphics 
accelerator and is GL_RGB5 or GL_RGBA4, or GL_RGB5_A1

<WIDTH> and <HEIGHT> correspond to the dimensions of the texture; <BORDER> 
indicates the width of the border which is either 0 (if there is no border) or 1

<FORMAT> and <TYPE> describe the format and data type of the texture image data

<PIXELS> is a pointer to the texture image data. This data describes the texture image it
well as its border.
2-28 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

tored. 
re() 

 to 

hether 
 case. 
 When put together, creating and enabling a texture surface is done by the following:
 glEnable(GL_TEXTURE_2D);

 glGenTextures(1, &texture_name);

 glBindTexture(GL_TEXTURE_2D, texture_name);

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16, width, height, 0, GL_RGBA16, 
GL_UNSIGNED_BYTE, image_pointer);

The variable image_pointer points to the memory location where the image data is currently s
Subsequent uses of the same image data need only use the glEnable() and the glBindTextu
calls.

2.2.5.2 Texture Map Blending

The Intel740™ graphics accelerator supports texture map blending modes that can be used
modify the pixel color by blending a textured surface with the underlying vertex color.   

Example 2-19. Enabling Texture Blending with DirectX

DirectX texture blending modes are shown in Table 2-3. Each mode’s behavior depends on w
a texture alpha is provided (RGB or RGBA). The color and alpha equations are given for each
These equations employ the following definitions:

Some of the modes degenerate to the same function if a texture alpha is not provided.

Cf intrinsic (flat or Gouraud Interpolated) color of feature

Af intrinsic (flat or Gouraud Interpolated) alpha of feature

Ct color from texture data

At alpha from texture data

Am lsb of nearest-neighbor alpha from texture data

Co color output of texture blend function

Ao alpha output of texture blend function
Intel740™ Graphics Accelerator Software Developer’s Manual 2-29



Hardware Capabilities

ith an 

r. The 
GBA 

 a 
xel 

re 
e 

n 
 is 1 

ature 
Each of the DirectX texture blend states is described in detail below:

DECAL

In the Decal state, the output color is the texture color. The output alpha is the feature alpha w
RGB texel format and the texture alpha with an RGBA texel format.

MODULATE

In the Modulate state, the output color is the product of the texture color and the feature colo
output alpha is the feature alpha with an RGB texel format and is the texture alpha with an R
texel format.

DECALALPHA

In the Decal Alpha state, the output color is the texture color with an RGB texel format and is
texture alpha blended combination of the feature color and the texture color with an RGBA te
format. The output alpha is the feature alpha.

MODULATEALPHA

In the Modulate Alpha state, the output color is the product of the texture color and the featu
color. The output alpha is the feature alpha with an RGB texel format and is the product of th
feature alpha and the texture alpha, with an RGBA texel format.

DECALMASK

In the Decal Mask state, the output color is the texture color with an RGB texel format. With a
RGBA texel format, the output color is the texture color if the nearest neighbor texel alpha lsb
and is the feature color if the nearest neighbor texel alpha lsb is 0. The output alpha is the fe
alpha.

Table 2-3. DirectX Texture Map Blending Functions

Mode Texture Mode Pixel Color Alpha D3D Texture Modes 
(D3DBLEND_)

Decal RGB Co = Ct Ao = Af DECAL

Decal RGBA Co = Ct Ao = At

Modulate RGB Co = Cf * Ct Ao = Af MODULATE

Modulate RGBA Co = Cf * Ct Ao = At

Decal Alpha RGB Co = Ct Ao = Af DECALALPHA

Decal Alpha RGBA Co = (1-At)*Cf + At*Ct Ao = Af

Modulate Alpha RGB Co = Cf * Ct Ao = Af MODULATEALPHA

Modulate Alpha RGBA Co = Cf * Ct Ao = Af * At

Decal Mask RGB Co = Ct Ao = Af DECALMASK

Decal Mask RGBA
If (Am)  Co = Ct

Else     Co = Cf
Ao = Af

Modulate Mask RGB Co = Cf * Ct Ao = Af MODULATEMASK

Modulate Mask RGBA
If (Am)  Co = Cf * Ct

Else     Co = Cf
Ao = Af
2-30 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

 color 

e color 

ace to 

erator 

 in 
color 
s the 
e a 
 

e color 
e color 
MODULATEMASK

In the Modulate Mask state, the output color is the product of the feature color and the texture
with an RGB texel format. With an RGBA texel format, the output color is the product of the 
feature color and the texture color if the nearest neighbor texel alpha lsb is 1 and is the featur
if the nearest neighbor texel alpha lsb is 0. The output alpha is the feature alpha.

To use the texture map blending features with DirectX, first obtain a handle to the texture surf
be used for blending:
D3DTEXTUREHANDLE HTex;

lpTextureSurface->GetHandle(lpD3Ddevice, HTex);

SetRenderState(D3DRENDERSTATE_TEXTUREHANDLE, &HTex);

SetRenderState(D3DRENDERSTATE_TEXTUREMAPBLEND, <D3DTEXTUREBLEND>);

Where the D3DTEXTUREBLEND values are (D3DTBLEND_) DECAL, DECALALPHA, 
DECALMASK, MODULATE, MODULATEALPHA, MODULATEMASK, or COPY.

Example 2-20. Enabling Texture Blending with OpenGL

Table 2-4 states the texture blend functions for OpenGL which the Intel740™ graphics accel
supports.

To enable texture map blending in OpenGL, the following code is used:
glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, textureName); 

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_NEV_MODE , <MODE>);

where <MODE> is stated as being either GL_DECAL or GL_MODULATE.

2.2.5.3 Texture Map Color Keying

Color keying is similar to the Hollywood "blue screen" effect whereby a color can be selected
the destination texture through which the source can be made visible. To enable destination 
keying, the user selects a color value in the destination surface as the color key and then blit
source texture using the destination color key flag. Another way to use color keying is to mak
portion of the source texture inivisible so that only some of the texture is shown on top of the
destination surface. Source color keying is a popular way to produce 2D sprites over a 3D 
background. For source color keying, the user selects a color value in the source texture as th
key value to be made transparent and then performs the blit with that texture using the sourc
key flag as illustrated in the DirectX source code example below.

Table 2-4. OpenGL Texture Blend Modes and Equations

Mode Texture Mode Pixel Color Alpha OpenGL Mode

DECAL RGB Co = Ct Ao = Af GL_DECAL

DECAL RGBA Co = Cf(1-At)+Ct*At Ao = Af GL_DECAL

MODULATE RGB Co = Cf * Ct Ao = Af GL_MODULATE

MODULATE RGBA Co = Cf * Ct Ao = Af*At GL_MODULATE
Intel740™ Graphics Accelerator Software Developer’s Manual 2-31



Hardware Capabilities

r 
lue. 

ich 
y.
Example 2-21. Enabling Texture Map Color Keying with DirectX

To enable color keying with DirectX, the user fills in a D3DCOLORKEY structure's 
dwColorSpaceLowValue and dwColorSpaceHighValue with the transparent color's value.  Fo
palettized texture, this will be a palette index.  For RGBA textures, this will be a 16 bit color va
The rest of the code is as follows:
typedef struct D3DCOLORKEY{

DWORD dwColorSpaceLowValue;

DWORD dwColorSpaceHighValue;

}  DDCOLORKEY;

DDCOLORKEY ColorKeyInfo;

// for non-palettized textures

ColorKeyInfo.dwColorSpaceLowValue = 0x0000;  

ColorKeyInfo.dwColorSpaceHighValue =   0x0000;

// for palettized textures

ColorKeyInfo.dwColorSpaceLowValue = 0;  

ColorKeyInfo.dwColorSpaceHighValue =  0;

lpTextureSurface->SetColorKey(<dwFlags>, &ColorKeyInfo);

Where the <dwFlags> are either, DDCKEY_DESTBLT, DDCKEY_DESTOVERLAY, or 
DDCKEY_SRCBLT. The SetColorKey function takes as its first parameter a DWORD flag wh
can specify whether the color key is for a source blit, a destination blit, or a destination overla

To enable the color keying, the user needs to set the appropriate render state:
SetRenderState(D3DRENDERSTATE_COLORKEYENABLE, TRUE);

To actually see color keying, use one of the DirectX Blt functions as shown:
lpBackBuffer->BltFast(Xpos, Ypos, lpOffscreenSurface, &Rectangle, 
DDBLTFAST_SRCCOLORKEY);

Figure 2-15. A Color Keyed Splash
2-32 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

ver in 
is set, 
n 1.0 

re is 

fect of 
oth of 
iddle 

ated 
arent 
2.2.5.4 Texture Wrapping Formats

Applications can specify different texture-wrapping formats for either or both of the U and V 
directions.  

Example 2-22. Enabling Texture Wrapping with DirectX

The Intel740™ graphics accelerator supports the following DirectX texture wrap formats:

WRAP 

The wrap mode creates an effect in which the texture map looks like it is repeated over and o
the selected region.   In wrap mode, textures appear to be tiled. If either WRAPU or WRAPV 
the texture is an infinite cylinder with a circumference of 1.0. Texture coordinates greater tha
are valid only in the dimension that is not wrapped. 

MIRROR

The mirror mode creates an effect where the texture map looks flipped or “mirrored.” It is 
equivalent to the wrap mode’s “tiling” effect except that the texture is flipped at every integer 
junction. For instance, between 0 and 1 the texture is normal, then between 1 and 2 the textu
flipped, and between 2 and 3 it is normal, then between 3 and 4 it is flipped, etc. 

CLAMP

In clamp mode, the texture coordinates greater than or equal to 1.0 are set to 
(impasses - 1)/mapsize, and values less than 0.0 are set to 0.0. Figure 2-16 illustrates the ef
the clamp modes. The base texture map is shown, along with two texture mapped objects.  B
these objects have texture coordinates that fall outside of the [0,1] range. The object in the m
illustrates Clamp mode (specified for both U and V), where the texels at the edges are replic
outside the [0,1] range. The object at the right illustrates the same object with Clamp Transp
mode, where pixels with texture coordinates outside the [0, 1] range are not rendered.

Table 2-5. Supported DirectX Texture Wrap Formats

Texture Wrap U Texture Wrap V D3DTEXTUREADDRESS

Wrap Wrap D3DTADDRESS_WRAP

Mirror Mirror D3DTADDRESS_MIRROR

Clamp Clamp D3DTADDRESS_CLAMP

Figure 2-16.  Texture Clamp Mode

1,1

0,0
Texture

Texture Object
(Clamp U,V Mode)

Texture Object
(Clamp Transparent U,V Mode)
Intel740™ Graphics Accelerator Software Developer’s Manual 2-33



Hardware Capabilities

map 

ing is 
ce. If 
ture 

res, if 
0 

the 
s 
r and 

exture 
 is 

ar 
In DirectX, the default texture wrap format is D3DADDRESS_WRAP. To change the texture 
format with DirectX API, first set the appropriate texture address type:
SetRenderState(D3DRENDERSTATE_TEXTUREADDRESS, <D3DTEXTUREADDRESS>);

Where the D3DTEXTUREADDRESS is either D3DTADDRESS_WRAP, 
D3DTADDRESS_MIRROR, or D3DTADDRESS_CLAMP.

Then enable texture wrapping in either the U or V direction by setting the following:
SetRenderState(D3DRENDERSTATE_WRAPU, TRUE);

SetRenderState(D3DRENDERSTATE_WRAPV, TRUE);

Example 2-23. Enabling Texture Wrapping with OpenGL

The Intel740™ graphics accelerator supports the following OpenGL texture wrap formats:

In OpenGL, the texture wrap methods are defined as follows:

CLAMP

Any values greater than 1.0 are set to 1.0, and any values less than 0.0 are set to 0.0. Clamp
useful for applications where you want a single copy of the texture to appear on a large surfa
the surface-texture coordinates range from 0.0 to 10.0 in both directions, one copy of the tex
appears in the lower corner of the surface.

REPEAT

Any values outside the range of [0,1] will be repeated in the texture map. With repeating textu
you have a large texture surface with coordinates from 0.0 to 10.0 in both directions, then 10
copies of the texture will be tiled on the screen.

To enable a texture mapping method, the following calls should be made:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, <WRAP_MODE>);

glTexParameterI(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, <WRAP_MODE>);

Where <WRAP_MODE> is either GL_CLAMP or GL_REPEAT.

2.2.5.5 Texture Map Filtering

Texture map filtering enables the user to choose the method the hardware uses to calculate 
output pixel color as it corresponds to the texture’s texel color at the mapped location. Factor
which determine the user’s screen pixel color include the distance of the object from the viewe
the size of the texture map in relation to the size of the object.   In some applications where t
filtering is not used, a close up object can cause a texture to look blocky because each texel
repeated over a square range of pixels. 

The Intel740™ graphics accelerator supports the following texture filtering modes for both 
DirectX and OpenGL: Nearest, Linear, Mip Nearest, Mip Linear, Linear Mip Nearest and Line
Mip Linear. The Mip modes will be discussed in the Texture Mipmapping section.

Table 2-6. Supported OpenGL Texture Wrap Formats

GL_TEXTURE_WRAP_S GL_TEXTURE_WRAP_T VALUE

Clamp Clamp GL_CLAMP

Repeat Repeat GL_REPEAT
2-34 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

th 
res as 

 
 a 

 when 
hen the 
NEAREST

The nearest texture filtering mode is also known as “point filtering.” In this mode, the texel wi
coordinates nearest to the desired pixel value are used. The output can result in blocky textu
the object becomes larger to the viewer.

LINEAR

The linear texture filtering mode is also known as “bilinear filtering.” In this mode, a weighted
average of a 2-by-2 area of texels surrounding the desired pixel is used. The output results in
smoother representation of the texture without blockyness. 

Example 2-24. Enabling Texture Map Filtering with DirectX

To enable texture filtering with DirectX, there are two cases which must be addressed. First is
the texture map is minified because the texel is smaller than one pixel. The second case is w
texture map is magnified and a texel is larger than one pixel. To enable texture filtering with 
DirectX, the following render states must be set:
SetRenderState(D3DRENDERSTATE_TEXTUREMIN, <D3DTEXTUREFILTER>);

SetRenderState(D3DRENDERSTATE_TEXTUREMAG, <D3DTEXTUREFILTER>);

Where the D3DTEXTUREFILTER can be set to either D3DFILTER_NEAREST, 
D3DFILTER_LINEAR, D3DFILTER_MIPNEAREST, D3DFILTER_MIPLINEAR, 
D3DFILTER_LINEARMIPNEAREST, or D3DFILTER_LINEARMIPLINEAR.

Example 2-25. Enabling Texture Map Filtering with OpenGL

To enable texture filtering with OpenGL, the following calls are made:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, <FILTER_MODE>);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, <FILTER_MODE>);

Where FILTER_MODE is either GL_NEAREST, GL_LINEAR,  GL_MIPMAP_NEAREST, 
GL_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, or 
GL_LINEAR_MIPMAP_LINEAR.

Figure 2-17. Point Filtering VS. Bilinear Filtering
Intel740™ Graphics Accelerator Software Developer’s Manual 2-35



Hardware Capabilities

it is 
cause 
ay 
ize 
asing 
se of 
arther 
and 

 x 1 

 2 
lected 

map 

 for 

red 
2.2.5.6 Texture Mipmapping

Because textured objects can be viewed at different distances from the viewer in 3D space, 
possible for a texture object to become smaller than the texture image. This occurrence will 
the texture map to be under-sampled during rasterization. As a result, the texture mapping m
display artifacts or “noise.” The purpose of trilinear interpolating and mipmapping is to minim
this effect. With mipmapping, software provides a series of pre-filtered texture maps of decre
resolutions, called “mipmaps” and stores them in memory. When a 3D object is larger becau
its close proximity to the viewer, a corresponding texture map is used. As the object moves f
away from the viewer, the Intel740™ graphics accelerator determines which mipmap to use 
switches to a smaller texture size. 

Intel740™ graphics accelerator supports 11 mipmaps ranging from 1024 x 1024 down to a 1
texel map. Each successive level has 1/2 the resolution of the previous level in the U and V 
directions until a 1x1 texture is reached. Both dimensions of the mipmap must be a power of
although they do not have to be square. Four forms of mipmap texture filtering that can be se
in either DirectX or OpenGL are:

MIP NEAREST

Similar to the texture filtering Nearest form except that Mip Nearest uses the appropriate mip
for texel selection.

MIP LINEAR

Similar to the texture filtering Linear form except that Mip Linear uses the appropriate mipmap
texel selection.

LINEAR MIP NEAREST

The two closest mipmap levels are chosen and then a linear blend is used between point filte
samples of each level.

LINEAR MIP LINEAR

The two closest mipmap levels are chosen and then combined using a bilinear filter.

Figure 2-18. An Example of Five Levels of Mipmapped Texture
2-36 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

d 
hat 
ipmap 
ll the 

ge onto 
ce call 
ce 
in-

 
all is 

n the 

ll:
Example 2-26. Mipmap Enabling with DirectX

To enable texture mipmapping using DirectX, a mipmapped surface must first be created an
loaded with the appropriate texture maps. To do this with DirectX Immediate Mode, specify t
the surface is a TEXTURE surface and also a MIPMAP surface.   The user can specify the m
count, but this is not necessary. When the “CreateSurface” call is made, DirectX generates a
levels on its own, down to 1x1. 

Start by creating the mipmap surfaces:
HRESULT                 ddres;

DDSURFACEDESC           ddsd;

LPDIRECTDRAWSURFACE3   lpDDMipMap;

ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_MIPMAPCOUNT; ddsd.dwMipMapCount = 5;

ddsd.ddsCaps.dwCaps = DDSCAPS_TEXTURE | DDSCAPS_MIPMAP | DDSCAPS_COMPLEX

    | DDSCAPS_VIDEOMEMORY | DDSCAPS_NONLOCALVIDMEM; 

ddsd.dwWidth = 256;

ddsd.dwHeight = 256;

Then call the CreateSurface function to build the mipmap chain of surfaces:
ddres = lpDD->CreateSurface(&ddsd, &lpDDMipMap);

Now five subsequent mipmapped surfaces have been created. The next step is to load an ima
each surface. This can be done by traversing the surfaces with the DirectX GetAttachedSurfa
and then copying a bitmap which has already been loaded to the current mipmap level surfa
using the DDCopyBitmap function. See the DirectX SDK manuals and on-line help for more 
depth information.

Finally, enable the mipmap filtering mode by setting the following render state in DirectX:
SetRenderState(D3DRENDERSTATE_TEXTUREMIN, <D3DTEXTUREFILTER>);

SetRenderState(D3DRENDERSTATE_TEXTUREMAG, <D3DTEXTUREFILTER>);

Where D3DTEXTUREFILTER is D3DFILTER_MIPNEAREST, D3DFILTER_MIPLINEAR, 
D3DFILTER_LINEARMIPNEAREST, or D3DFILTER_LINEARMIPLINEAR.

Example 2-27. Enabling Mipmapping with OpenGL

OpenGL has a function which generates all the mipmaps from the dimensions of the mipmap
specified down to 1x1. The dimensions of the mipmap can be any power of 2. The following c
used:
gluBuild2DMipmaps(GLenum target, Glint components, Glint width, Glint height, 

Glenum format, Glenum type, void *data);

This function is like the glTexImage2D() which creates a texture map surface as mentioned i
section above.

Then, enable either the mip-nearest or mip-linear filtering mode with the following function ca
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, <FILTER_MODE>);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, <FILTER_MODE>);

Where FILTER_MODE is GL_MIPMAP_NEAREST or GL_MIPMAP_LINEAR, 
GL_LINEAR_MIPMAP_NEAREST, or GL_LINEAR_MIPMAP_LINEAR.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-37



Hardware Capabilities

by a 

rned 

 

d the 
2.2.6 Drawing Formats

The Intel740™ graphics accelerator supports the following Drawing Formats:

Solid The output to the screen is a triangle, either solid color or patterned 
texture map.

Wire-frame The output to the screen is a line drawing, either solid color or patte
by a texture map.

Example 2-28. Enabling Drawing Formats with DirectX

To enable drawing formats with DirectX, the following render state call is used:
SetRenderState(D3DRENDERSTATE_FILLMODE, <D3DFILLMODE>);

Where D3DFILLMODE is either D3DFILL_WIREFRAME or D3DFILL_SOLID.

Example 2-29. Enabling Drawing Formats with OpenGL

To enable drawing formats with OpenGL, the following call is made:
glPolygonMode(<FACE>, <MODE>);

where FACE is GL_FRONT_AND_BACK, GL_FRONT or GL_BACK and MODE is either 
GL_LINE, or GL_FILL.

2.2.7 Buffers

The Intel740™ graphics accelerator supports many buffer types including:

• A back buffer, which can be placed in local video memory

• A front buffer, which should be placed in local video memory

• A Z-buffer, which must be placed in local video memory 

The Intel740™ graphics accelerator also supports two back buffer surfaces needed for triple
buffering. 

In OpenGL, the buffers are created by selecting the proper pixel format. The pixel formats an
corresponding buffers they create are as follows:

NOTES:
1. Depending on the way your display adapter is configured, the actual Visual ID may differ.
2. Supported only with the OpenGL ICD (Installable Client Driver)

When creating buffers with the DirectX API, the user uses the “CreateSurface” call and sets 
appropriate DDSD flags and capabilities.

Table 2-7. Pixel Formats and Buffers

Visual ID 1 Frame Buffer 
Format Double Buffer Depth Buffer 

Size (bits )
Stencil Buffer 

Size (bits )
Accumulation 

Buffer Size (bits )

1 R5_G6_B5 No 0 0 0

1 R5_G6_B5 Yes 0 0 0

3 R5_G6_B5 No 16 0 0

4 R5_G6_B5 Yes 16 0 0

52 R5_G6_B5 Yes 16 8 64
2-38 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

e 

r 
d 
lp 
nd it is 
ffers 
e 

.

 of 

as 
s 
 value 
 clear 

ic 
.

2.2.7.1 Double and Triple Buffering

Intel740™ graphics accelerator permits the use of both double and triple buffering, where on
buffer is the primary buffer used for display and one or two are the back buffer(s) used for 
rendering. With double buffering, an application typically constructs a scene in the back buffe
while the front buffer is being displayed. With triple buffering, a flipping chain of buffers is use
which gives added buffering between drawing to the back buffer and rendering which can he
increase performance. For double buffering, when the scene in the back buffer is complete a
time to display, the application flips the two buffers or rather, switches the roles of the two bu
so that the drawn-to buffer becomes the rendering buffer and vice versa.   In the case of tripl
buffering, when flipping of the buffers is performed, the application makes the second to last 
drawn-to buffer the rendering (primary) buffer and draws to the last buffer used for rendering

2.2.7.2 Z-Buffering

The Z-buffer contains 16 bits of depth information for each pixel in the display buffer. The use
the Z-buffer is optional. Figure 2-19 shows the use of the Z-buffer. 

When enabled, the Z-buffer function performs a depth compare between the pixel Z (known 
source Z or ZS) and the Z value read from the Z-buffer at the current pixel address (known a
destination Z or ZD). If the test is not enabled, it is assumed the Z test always passes. The Z
is only written to the Z-buffer when the results of the Z test are true. It is always necessary to
the Z-buffer before each new frame is drawn.

The Intel740™ graphics accelerator uses a logarithmic method for Z-buffering. The logarithm
approach makes those objects closer to the viewer look better than does the linear approach

Figure 2-19. Z-Buffering Off vs. Z-Buffering On
Intel740™ Graphics Accelerator Software Developer’s Manual 2-39



Hardware Capabilities

ed due 

nimal 
d first, 

bled 
 the 
Example 2-30. Enabling Z-Buffering with DirectX
To Create a Z-buffer with DirectX the following surface must be created:

DDSURFACEDESC ddsd;

IDIRECTDRAW*lpdd;

IDIRECTDRAWSURFACE*lpZSurface;

HRESULT ddrval;

ddsd.dwSize = sizeof(ddsd);

ddsd.dwHeight = window_height;

ddsd.dwWidth = window_width;

ddsd.dwZBufferBitDepth = 16;

ddsd.wFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_ZBUFFERBITDEPTH;

ddsd.ddsCaps = DDSCAPS_ZBUFFER | DDSCAPS_VIDEOMEMORY | DDSCAPS_LOCALVIDMEM;

ddrval = lpdd->CreateSurface(&ddsd, &lpZSurface, NULL);

To enable Z-buffering with DirectX, the following render states must be set:
SetRenderState(D3DRENDERSTATE_ZENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ZWRITEENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ZFUNC, <D3DCMPFUNC>);

D3DCMPFUNC is D3DCMP_NEVER, D3DCMP_LESS, D3DCMP_EQUAL, 
D3DCMP_GREATEREQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER, 
D3DCMP_NOTEQUAL, or D3DCMP_ALWAYS.

The application also must clear the Z-Buffer using the following DirectX function call:
lpZSurface->Blt(lpDestRect, lpDDSrcSurface,lpSrcRec,  DDBLT_DEPTHFILL, 
dwFillDepth);

Example 2-31. Enabling Z-Buffering with OpenGL

To enable Z-Buffering with OpenGL, the following code is used:
glEnable(GL_DEPTH_TEST);

glDepthFunc(<FUNCTION>);

FUNCTION is GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, 
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL.

2.2.8 Antialiasing

Antialiasing will blend the edges of objects so that they appear to be smooth rather than jagg
to the amount of pixel resolution on the screen. It is recommended to enable antialiasing for 
approximately 20% of the geometry where it will count most as antialiasing does cause a mi
performance decrease. The best way to use antialiasing is to render everything not antialiase
and then to render the last 20% with antialiasing enabled.  Z buffering should always be ena
when using the Intel740 chip so that polygon sorting is not required of the user and to ensure
highest rate of 3D acceleration.
2-40 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

led, 

oth 
quires 
sing 

 a 
 that 

ing is 

 stage 
of 
ics 
 a 
oint 

ces 
ulling 
re 
Example 2-32. Enabling Antialiasing with DirectX

To enable antialiasing with DirectX, the user needs to have Z buffering enabled, Z write enab
and also a Z function should be defined. Sorting of polygons is not required, although if 
antialiasing a portion of the scene, that portion should be rendered last. Both the 
SORTDEPENDENT and SORTINDEPENDENT methods are supported; however, they will b
produce the same results and they will both take the same amount of time.  Neither method re
that the user pre sort their polygons. Alphablending needs to be disabled when using antialia
with the Intel740 chip for antialiasing to work.

To enable antialiasing with DirectX, the following render state is enabled:
SetRenderState(D3DRENDERSTATE_ANTIALIAS, SORTDEPENDENT);

When using execute buffers, an edge flag can be set to enable edge antialiasing.

Example 2-33. Enabling Antialiasing with OpenGL

To enable antialiasing with OpenGL, the user needs to have a blending method enabled and
blending function selected depending on how their application is created.  It is recommended
the user does not sort their polygons, but relies on the Intel740 chip's Z buffering for more 
hardware acceleration.  The following code can be used to enable antialiasing when Z buffer
enabled:
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_LINE_SMOOTH);

2.2.9 Back Face Culling

One of the stages in the 3D Pipeline which can be performed in either the software geometry
or in the hardware rendering stage is that of back face culling which consists of the removal 
surfaces of 3D objects which cannot be seen from the user’s viewpoint. The Intel740™ graph
accelerator supports back face culling. Because every surface has a surface normal which is
vector perpendicular to its surface, the normals of each surface can be tested to see if they p
backwards away from the viewer. Back face culling saves processing time since culled surfa
will not need to be rendered. When using color alpha blending, be sure to disable back face c
because alpha blending looks better when the back facing polygons are also rendered and a
visible through the translucent alpha blended portions.

Figure 2-20. Effects of Antialiasing
Intel740™ Graphics Accelerator Software Developer’s Manual 2-41



Hardware Capabilities

are 
y 
d 
ty of 
tretch 
ch 
tion 

 This 
n and 

s) 
Example 2-34. Enabling Back Face Culling with DirectX

To enable back face culling with DirectX, the following renderstate is set:
SetRenderState(D3DRENDERSTATE_CULLMODE, <MODE>);

MODE is D3DCULL_CCW for counter clockwise culling, or D3DCULL_CW for clockwise 
culling.

Example 2-35. Enabling Back Face Culling with OpenGL

To enable back face culling with OpenGL:
glEnable(GL_CULL_FACE);

glCullFace(<MODE>);

MODE is GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

2.3 2D Capabilities

In this section the 2D capabilities of the Intel740™ graphics accelerator are discussed:

• “BitBLT Engine”(below)

• “Stretch BLT Engine” (below)

• “Color Expansion” (below)

• “Hardware Cursor” on page 2-44

• “Video Display Resolutions” on page 2-44

2.3.1 BitBLT Engine

The Intel740™ graphics accelerator’s high performance 64-bit BitBLT engine provides hardw
acceleration for many common Windows operations. To facilitate these, there are two primar
BitBLT functions in the Intel740™ graphics accelerator: fixed BitBLT and stretch BitBLT. Fixe
BitBLT involves transferring blocks of data from one memory location to another. The capabili
performing raster operations on the data using a pattern is also included. Stretch BitBLT can s
source data in the X and Y directions to a destination larger or smaller than the source. Stret
BitBLT functionality expands a region of memory into a larger or smaller region using replica
and decimation. 

If required, the Intel740™ graphics accelerator will expand monochrome data into color data.
new data will be destination aligned. The main feature of the BitBLT is to take a stored patter
expand it to the destination color space while destination aligning it.The Intel740™ graphics 
accelerator’s raster opcode engine supports all 256 Microsoft-defined raster operations (ROP
including transparent BitBLT. 
2-42 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

s. The 
 AGP 

s be 

depth 
ata 
 and 

laps 
 in 
rface 

e to 

ta, 
 can be 
ays 
 off-
t this 

as 

is 
 
et. 
ty to 

 
e 
2.3.1.1 Fixed BitBLT

The rectangular block of data does not change as it is transferred between memory location
allowable memory transfers are between: AGP memory and local memory, local memory and
memory, AGP memory and AGP memory, and local memory and local memory. Data to be 
transferred can consist of regions of memory, patterns, or solid color fills. A pattern will alway
8 x 8 pixels wide and may be 1, 8, or 16 bits per pixel. 

The Intel740™ graphics accelerator has the ability to expand monochrome data into a color 
of 8, 16, or 24 bits. BLTs can be either opaque or transparent. Opaque transfers, move the d
specified to the destination. Transparent transfers, compare destination color to source color
write according to the mode of transparency selected. 

Data is horizontally and vertically aligned at the destination. If the destination for the BLT over
with the source memory location, the Intel740™ graphics accelerator can specify which area
memory to begin the BLT transfer. Use of this BLT engine accelerates the Graphical User Inte
(GUI) interface of Microsoft* Windows. 

While the BitBLT engine is often used simply to copy a block of graphics data from the sourc
the destination, it also has the ability to perform more complex functions. As illustrated in 
Figure 2-21, the BitBLT engine can receive three different blocks of graphics data (source da
destination data, and pattern data). The source data can exist either in the Frame Buffer or it
provided by the host CPU from some other source (e.g., AGP memory). The pattern data alw
represents an 8x8 block of pixels that must be located in the Frame Buffer, usually within the
screen portion. The data already residing at the destination may also be used as an input, bu
data must also be located in the Frame Buffer.

The BitBLT engine can use any combination of these three different blocks of graphics data 
operands, in both bit-wise logical operations to generate the actual data to be written to the 
destination, and in per-pixel write-masking to control the writing of data to the destination. It 
intended that the BitBLT engine will perform these bit-wise and per-pixel operations on color
graphics data that is at the same color depth that the rest of the graphics system has been s
However, if either the source or pattern data is monochrome, the BitBLT engine has the abili
put either block of graphics data through a process called “color expansion” that converts 
monochrome graphics data to color. Since the destination is often a location in the on-screen
portion of the Frame Buffer, it is assumed that any data already at the destination will be of th
appropriate color depth.

Figure 2-21. BLT Engine Block Diagram and Data Paths

Pixel Masks

Source Data

Pattern Data

Color
Expansion
(If Needed)

Color
Expansion
(If Needed)

Bit-Wise
Logical

Operations

Pixel Masks

Pixel Masks

Per-Pixel Write-Masking

ComparisonComparison

Monochrome Source
Expansion

Background Color

Destination
Data
Intel740™ Graphics Accelerator Software Developer’s Manual 2-43



Hardware Capabilities

hich 
ansion 

 data 

 The 
r data. 
6, or 

arent, 
d as 

tes. 

nitor 
hics 

an be 

VGA 
 the 
2.3.1.2 Stretch BLT Engine

The Stretch BLT Engine allows a source memory region to be blitted to a destination region w
is larger, smaller or the same size as the source region by replacing or removing pixels. Exp
and shrinking can occur in both the horizontal and vertical directions.

An additional feature of the Stretch BLT Engine is the ability to transparently place the source
over some destination data by masking. This is useful for sprites in 3D games.

2.3.1.3 Color Expansion

During a BLT operation, source color depth may not be the same as destination color depth.
Intel740™ graphics accelerator supports monochrome data as well as 8, 16, and 24 bit colo
The BLT engine has the ability to expand source monochrome data into a color depth of 8, 1
24. Color expansion can be either opaque or transparent. When opaque, a foreground and 
background color are both transferred to the destination in the new color depth. When transp
only the foreground color is specified. This is very useful for text data. Text data can be store
one bit per pixel color (monochrome), and expanded to the correct color later.

2.3.2 Hardware Cursor

The Intel740™ graphics accelerator allows a total of 16 cursor patterns to be stored in 4 Kby
Six modes are provided for the cursor:

• 32x32 2 bpp 2-plane mode (Solid Color, Inverted Solid Color, Transparent, Inverted)

• 128x128 1 bpp 2-color mode

• 128x128 1 bpp 1-color and transparency mode

• 64x64 2 bpp 3-color and transparency mode

• 64x64 2 bpp 2-plane mode (Solid Color, Inverted Solid Color, Transparent, Inverted)

• 64x64 2 bpp 4-color mode

2.3.3 Video Display Resolutions

The Intel740™ graphics accelerator’s video function provides analog output for use with a mo
or a 8/12-bit digital output to interface to a TV output chip. Integrated into the Intel740™ grap
accelerator is an I2C interface to facilitate this capability. Video synchs and timings are fully 
programmable. Any overlays are merged with data from the frame buffer during output and c
scaled in the X and Y directions. Gamma correction can be applied on the video output. 
Resolutions supported for display ranges are shown in Table 2-8. In addition to the standard 
modes, the Intel740™ graphics accelerator also supports the following extended modes with
stated memory and refresh timings:
2-44 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

or, 
nitor or 

le of 
,Y 
he 
en 
ontal 
ge is 

y.

 that 

cursor 

 cursor 

 the 
ue). 
 be 

, 
The video display controller is responsible for the horizontal and vertical timings of the monit
accessing data from memory, preparing data for display, and presenting the results to the mo
TV. The Intel740™ graphics accelerator can convert YUV(4:2:2) to RGB format. An I2C Bus is 
provided for easier connection to some chips. 

The display engine also contains an overlay unit. The overlay (full motion video) unit is capab
converting from YUV4:2:2 format to 24 bpp RGB. Line widths to 720 pixels are supported. X
interpolation can be performed on the overlay window if the source is smaller or larger than t
destination display size. The Intel740™ graphics accelerator performs filtering/smoothing wh
interpolating in the horizontal and vertical directions. The data may be scaled in both the horiz
or vertical direction using a six bit expansion value. On output, the data is scaled up. The ima
increased in size only. This expansion is smoothed/filtered before being passed to the displa

When stretching is performed, the horizontal filter is 1-1. The vertical interpolation is either 
deblocking (average on change only) or 1-2-1 running average. Color keying is performed so
pixels of a selected color are transparent. (This editing effect is sometimes known as “blue 
screening.”)

The Intel740™ graphics accelerator contains a separate hardware cursor for Windows. The 
information is not stored within the frame buffer but is combined with the screen image 
immediately before the image is displayed. Functionality built into the cursor allows it to be 
enabled or disabled. Up to 16 cursor patterns (depending on size) may be stored in separate
data space.

The combined result from the hardware cursor, overlay, and primary display is performed by
RAMDACs. There are three 8-bit DACs (one for controlling red, one for green, and one for bl
Each DAC has a 256x8 palette RAM is responsible for storing information about the colors to
displayed. The Intel740™ graphics accelerator is optimized for a 2D output resolution of 
1024x768 and a 3D display resolution of 640x480. Within the 2D section, the horizontal sync
vertical sync, and blanking signals are fully programmable.

Table 2-8. Display Modes Supported

 Bits Per Pixel
(frequency: Hz)

Resolution 8-bit Indexed 16-bit 24-bit

320x200 60,72,75,85 60,72,75,85 60,72,75,85

320x240 60,72,75,85 60,72,75,85 60,72,75,85

512x384 60,72,75,85 60,72,75,85 60,72,75,85

640x350 85 85 85

640x480 60,72,75,85 60,72,75,85 60,72,75,85

800x600 56,60,72,75,85 56,60,72,75,85 56,60,72,75,85

1024x768 60,70,75,85 60,70,75,85 60,70,75,85

1280x1024 60,72,75,85 60,72,75 —

1600x1200 60,75 — —
Intel740™ Graphics Accelerator Software Developer’s Manual 2-45



Hardware Capabilities

 the 

ort 
ck 

o 
 as 
 is 
re 
tive 

 
 to the 

ird 

logy.  

ites. 

ta is 
 digital 
2.4 Video, VBI, and Intercast Capabilities

The Intel740™ graphics accelerator’s Video, VBI, and Intercast capabilities are discussed in
following subsections:

• “Video Capture Port” (Section 2.4.1)

• “Video Overlay” (Section 2.4.2)

• “VBI and Intercast” (Section 2.4.3)

2.4.1 Video Capture Port

2.4.1.1 Overview

The PC video interface to the Intel740™ graphics accerlator is a unidirectional digital input p
that accepts 16-bit wide data, two synchronizing signals (HREF, VFREF), and a pixel rate clo
(VCLK). The video capture port can be configured as a VMI interface. Taking the digital vide
data from this video port, the Intel740 graphics accelerator can perform video functions such
color space conversion, scaling, zooming, interpolation, and video playback.  Captured video
stored in a progressive format, as opposed to an interlaced format.  See Section 2.4.2 for mo
information regarding the progressive format and video overlay.  Although YUV 4:2:2 is the na
format for this port, RGB-15, RGB-16, and RGB-24 input formats are also supported. Not all
Intel740 graphics accelerator cards are configured to support video capture; be sure to refer
card manufacturer’s documentation to see if the card supports the video capture port.

Devices that output an analog signal can be connected to the video capture port through a th
party chip that provides analog to digital conversion. Digital camera video conferencing 
applications are supported permitting the user to have an unflipped/mirrored view. This port 
provides support for Intercast technology and POTS (Plain Old Telephone Service) video 
conferencing. Note that an external third party VBI decoder chip is needed for Intercast techno
For POTS video conferencing, the port interfaces to a camera.

To facilitate digital camera applications, the Intel740 graphics chip can perform backward wr
This allows the user to see a mirrored or non-mirrored view on screen.

Gamma correction is also provided. When in 8-bit-per-pixel mode or smaller, the graphics da
expanded by a palette. If analog to digital conversion is needed, an external chip creates the
signal sent to the Intel740 graphics chip.
2-46 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

of 
 

 struct 
 of 
e.
2.4.1.2 Video Capture Programming

Video capture is supported through the Video for Windows (VfW) API.  Below is an example 
how to perform video capture using VfW with the Intel740 graphics chip.  Refer to Microsoft*
Video for Windows design kit documentation for further information regarding VfW capture.

Example 2-36. Capturing a Video Sequence Using the VfW API

Capturing a video sequence requires a series of parameters found in the CAPTUREPARMS
to be initialized, followed by a call to capCaptureSequence(HWND).  The following is a listing
the CAPTUREPARMS struct, followed by a brief example of how to capture a video sequenc
//**************************************************************************

//

// CAPTURE PARAMS struct definition

//

//**************************************************************************

typedef struct tagCaptureParms {

DWORDdwRequestMicroSecPerFrame;// Requested capture rate

BOOLfMakeUserHitOKToCapture;    // Show “Hit OK to cap ”
// dialog

UINTwPercentDropForError;// Give error msg if > value

// default = 10%

BOOLfYield; // Capture via background task?

DWORDdwIndexSize; // Max index size in frames (32K)

UINTwChunkGranularity;// Junk chunk granularity (2K)

BOOLfUsingDOSMemory;// Use DOS buffers?

UINTwNumVideoRequested;// # video buffers, If 0,autocalc

BOOLfCaptureAudio;// Capture audio?

UINTwNumAudioRequested;// # audio buffers, If 0,autocalc

UINTvKeyAbort; // Virtual key causing abort

BOOLfAbortLeftMouse;// Abort on left mouse?

BOOLfAbortRightMouse;// Abort on right mouse?

BOOLfLimitEnabled;// Use wTimeLimit?

Figure 2-22. Intel740™ Graphics Accelerator Video Capture System Diagram

TV 
Tuner

ProShare 
Camera

S-Video Input

CVBS Input

Cable/
Antenna

Video 
Decoder 
(Bt829A)

8/16-bit 
Video 

Capture 
Port

I2C Master
(GPIO Pins) Overlay

Frame 
Buffer

Intel740™ 
Graphics 

Accelerator
Intel 

AGPset

To 
CRT

I2C Bus
Intel740™ Graphics Accelerator Software Developer’s Manual 2-47



Hardware Capabilities
UINTwTimeLimit; // Seconds to capture

BOOLfMCIControl; // Use MCI video source?

BOOLfStepMCIDevice;// Step MCI device?

DWORDdwMCIStartTime;// Time to start in MS

DWORDdwMCIStopTime;// Time to stop in MS

BOOLfStepCaptureAt2x;// Perform spatial averaging 2x

UINTwStepCaptureAverageFrames;// Temporal average n Frames

DWORDdwAudioBufferSize;// Size of audio bufs (0=default)

BOOLfDisableWriteCache;// Attempt to disable write cache

UINTAVStreamMaster;// Which stream controls length?

} CAPTUREPARMS;

//**************************************************************************

//

// Video Sequence Capture Example

//

//**************************************************************************

HWNDghWndCap;

extern CAPTUREPARMSgCapParms;

BOOLfResult;

charvidName[] = “C:Video.AVI “;

gCapParms.fMakeUserHitOKToCapture= FALSE;

gCapParms.fCaptureAudio= TRUE;

gCapParms.wPercentDropForError= 100;

gCapParms.wNumVideoRequested =                     gCapParms.fUsingDOSMemory ? 32 : 
1000;

// If wChunkGranularity is zero, the granularity will be set to the

// disk sector size.

gCapParms.wChunkGranularity = (gbIsScrncap ? 32 : 0);

capCaptureSetSetup(ghWndCap, &gCapParms, sizeof(CAPTUREPARMS));

// set a filename for the captured video

// hWnd == Application Main Window Handle

capFileSetCaptureFile(hwnd, vidName);

gCapParms.wNumVideoRequested = 10;

gCapParms.wNumAudioRequested = 5;

gCapParms.fLimitEnabled = TRUE;

if (gCapParms.wTimeLimit == 0)

    gCapParms.wTimeLimit = 5;

// Inform the capture window of the capture settings

capCaptureSetSetup(ghWndCap, &gCapParms, sizeof(CAPTUREPARMS));

// Capture video sequence to file specified by cmdSetCaptureFile()

fResult = capCaptureSequence(ghWndCap);
2-48 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

on the 
e data 
 
ter 
ture 
NC. 
o 

mage 
tions.  

 
lly 
n a 

ically 

 is 
ase 
e line 
lay on 

 
ing 

n 
f the 
 In a 
 VBI. 

ics 
d video 
o the 
2.4.2 Video Overlay

2.4.2.1 Overview

The overlay engine provides a method of merging video capture data with the graphics data 
screen. Supported data formats include YUV 4:2:2, RGB15, RGB16, and RGB24. The sourc
can be mirrored horizontally or vertically or both. Overlay data comes from a buffer located in
local memory or AGP memory. Data can be double buffered using a pair of 32-bit buffer poin
registers. Data can either be transferred into the overlay buffer from the host or the video cap
logic. Buffer swaps can be done by the host and internally synchronized with the display VSY
Buffer swaps also automatically happen based on the completed capture frame from the vide
capture engine and the display VSYNC.

The Intel740™ graphics accelerator overlay can accept line widths up to 1024 pixels. Each i
can be enlarged using a 6-bit expansion value filtered in both the horizontal and vertical direc
The horizontal filter is a 3-Tap FIR type and the vertical filter uses either line replication, 
smoothing at line boundaries, or continuous running average.

2.4.2.2 Field Based Content

When interlaced video data is stored in progressive field format, the field-based method (also
referred to as the “bob” method) of displaying video data is used to show each field individua
using an overlay. Vertical scaling is required to stretch the image to the original aspect ratio o
progressive PC monitor. Each field is half the normal height. Thus, for example, it can be vert
zoomed by 2X using an overlay stretch to restore the correct aspect ratio.

Due to the spatial interlacing of the top and bottom fields, proper vertical position adjustment
required to align the two fields. To prevent the image from jittering up and down, the initial ph
of the overlay vertical scalar is set to one for the top field. This accommodates the one sourc
offset between the two fields. This method produces a 60 fields per second (NTSC) field disp
progressive monitors and retains all temporal information.

The bob field-based display method can be automatic when showing video from the capture
engine. The Intel740™ graphics accelerator is capable of using field information from incom
video to automatically adjust the overlay vertical position (auto-bob method).

2.4.3 VBI and Intercast

2.4.3.1 Overview

A vertical blanking interval (VBI) is the time period in which a television signal is not visible o
the screen because of the vertical retrace (that is, the electron gun repositioning to the top o
screen to start a new scan).  Data services can be transmitted using a portion of this signal. 
standard NTSC signal, roughly 10 scan lines are potentially available per channel during the
Each scan line represents a data transmission capacity of about 9600 baud.

When special data is mixed with video data, as it is for VBI or Intercast, the Intel740™ graph
chip’s scalars should not be used.  It is important to use a capture chip which can send scale
data with raw VBI data. The Intel740 graphics chip will accept the VBI data and video data int
same capture buffer where software can separate the two forms of data.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-49



Hardware Capabilities

 an 
l740 
der 
nd 
V2 

el 
 to be 

 the 

via the 

eo port

he 
h a 
rt, 
2.5 DVD Capabilities

2.5.1 Overview

The Intel740 chip’s VMI port consists of a video port and a host port.  The host port provides
enhanced VMI 1.4 Mode B port; the enhancements allow burst modes of operation.  The Inte
chip’s video port is used to receive decompressed video data from a DVD chip, a video deco
chip, or from a software decoder.  Using both the host and video ports, DVD, TV, Intercast, a
video capture can be achieved.  The incoming video stream sent to the Intel740 chip is in YU
format with a resolution of 720x480 at 30 frames per second following the CCIR601 8-bit pix
standard.  Use of the Intel740 chip’s overlay capability allows images from the capture engine
displayed while being captured. Figure 2-23 illustrates the flow of data through a system 
performing DVD playback.  Typically, a DVD drive will be attached as an EIDE device where
DVD compressed data is bus mastered into main memory. The data flow steps are:

1. IDE bus master DVD data to main memory

2. CPU moves compressed data to AGP memory

3. Intel740 chip uses AGP bus master to move compressed data to the DVD decoder chip (
host port)

4. Decompressed data for the display is then sent back to the Intel740 chip through the vid

2.5.2 Hardware DVD/MPEG-2 Movie Playback

2.5.2.1 Software Considerations

The Intel740 chip drivers, DirectDraw HAL and DDVPE HAL handle video display for DVD.  T
VMI interface is handled by the Intel740 chip drivers, while the video port is supported throug
VPE interface.  Using the Intel740 chip drivers for the host port VMI and VPE for the video po
there is no need to write directly to the Intel740 chip’s video configuration registers or VMI.

Figure 2-23. Data Flow for DVD Playback

DVD Chip

System Memory

AGP Memory

Display

Intel740™ Graphics
Accelerator

Video Port Host Port

Decompressed
Data

Compressed
Data

AGP Bus Master

PCI Bus

PCI Slots

Intel
440LX AGPset

CPU Moves
Compressed Data

IDE Bus Mastered
Compressed Data

IDE Bus Mastered
Compressed Data

Pentium® II  Processor

DVD CD
ROM

AGP Bus Master
(2X AGP)
2-50 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

  This 
 code 

ce, 
 an 

n to 

uired 
TSC 

ut TV 
es the 

he 
 TV 
2.5.2.2 Creating a VPE Port

Appendix A provides the vpe.h and vpp.cpp files as an example of how to create a VPE port.
is sample code only and is intended to be used as a help for those unfamiliar with VPE.  This
takes input from the 8-bit VMI video port and displays it using VPE.

2.6 TV Out Interface

2.6.1 Overview

The Intel740 graphics accelerator chip has a digital TV out interface. When using this interfa
normal VGA display cannot be used.  The 12-bit digital interface is designed to interface with
external TV encoder, which incorporates a high quality flicker filter and performs overscan 
compensation.  While the Intel740 chip supports the TV out interface, not all specific card 
implementations will support this feature.  Refer to the individual graphics card documentatio
see if TV out is supported.

When TV out is enabled, the pixel data from the Intel740 chip must be supplied at a rate req
by the TV out port.  This means that the PC monitor must run at about 60 Hz refresh when N
TV out is desired, and 50 Hz when PAL is desired.

Only the following screen modes need to be supported for TV out:

• 720x400 Text (like VESA Mode 3+ for TV out support during boot-up)

• 640x480

• 800x600

• 320x240 (for TV-Out DOS game support)

• 320x200 (for TV-Out DOS game support)

• 720x480 (Windows 9x only, Maximum Overscan, and no Flicker-Filter)

• 720x576 (Windows 9x only, Maximum Overscan, and no Flicker-Filter)

All modes should support the same color depths that are supported by the Intel740 chip witho
out enabled, since the TV out hardware is not concerned with how the Intel740 chip generat
pixel data at it’s TV out port.

On the software side, other than for special encryption cases, TV out requires no special 
programming.  The Windows* control panel handles all functions of the TV out capabilities (t
software structure is diagrammed below in Figure 2-24).  The only programming required for
out is during playback of digital video (typically DVD) that calls for copy protection.  This is 
discussed further below.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-51



Hardware Capabilities

rding 
bling 

98 

all to 
2.6.2 Using TV Out with Copy Protection

One requirement of DVD playback is that the TV signal be encrypted so that an external reco
device (a VCR) cannot copy the signal.  Microsoft* has introduced a new standard way of ena
this in Microsoft Windows 98*, using the VIDEOPARAMETERS escape described in the Win
Driver Design Kit.  The Intel740 chip’s TV out driver also provides a custom interface for 
operating systems (Win95) that do not support the Windows 98 standard.  This is through a c
the SetMovieMode interface.  Both methods are shown below.

Figure 2-24.  Windows* TV Output Control Software Structure

Config Applet
(TV Out)

Mode 
SettingControls

Registry 
Setting

TV Encoder Driver

VideoBIOS 
(TV Out)

I2C VxD

Filter Control TV 
Output Select 

Control 

Enable/Disable TV Out 
SetMode 
SetOverScanRatio

Intel740™ Chip Hardware / TV Encoder
2-52 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

opy 
le it, 

Only 
2.6.2.1 Enabling Copy Protection Using SetMovieMode

SetMovieMode

Syntax:
HRESULT SetMovieMode (WORD wCopyProtectMode)

Description:

Sets the copy protection mode to use while encoding.  If the TV Out encoder must support c
protection, it is enabled with this function.  Only the application that sets his mode may disab
by calling SetMovieMode(0).

Parameters:
WORD wCopyProtectMode 

The copy protection mode to use.  If this value is 0, copy protection is disabled.

Return:
S_OK

The copy protection mode change occurred successfully,
E_FAIL

The encoder hardware does not support copy protection.
E_ACCESSDENIED

Copy Protection could not be disabled.  Another application may have set the movie mode.  
the application that sets protection may disable it.

Example 2-37. Disabling Copy Protection Using SetMovieMode
#include "gfxTVOut.h"

...

CoInitialize();

...

ITVOut* pTVOut;

HRESULT hr = CoCreateInstance(CLSID_TVOut, NULL, CLSCTX_INPROC_SERVER,

IID_ITVOut, (void**)&pTVOut);

if (SUCCEEDED(hr))

{

if (SetMovieMode(0) == S_OK)

{

MessageBox(NULL, "Copy protection disabled", "Notice", MB_OK);

}

else

{

MessageBox(NULL, "Unable to set copy protection.", "Notice",MB_OK);

}

}

else

{

MessageBox(NULL, "Problem Creating TVOut interface","Error",MB_OK);

}

CoUnnitialize();
Intel740™ Graphics Accelerator Software Developer’s Manual 2-53



Hardware Capabilities

de 
e 

and 

e 
 copy 
etting 
2.6.2.2 Enabling Copy Protection Using VIDEOPARAMETERS (Win98)

This is the recommended way of enabling copy protection under Windows 98*.  SetMovieMo
will only work for the Intel740 graphics accelerator driver, whereas the method described her
should work for any Windows 98 TV out driver.

The Windows 98 API for TV capabilities uses a structure called VIDEOPARAMETERS to 
interface with the video card.  The structure definition is given below.
typedef struct _VIDEOPARAMETERS {

GUID Guid;

DWORD dwOffset;

DWORD dwCommand;

DWORD dwFlags;

DWORD dwMode;

DWORD dwTVStandard;

DWORD dwAvailableModes;

DWORD dwAvailableTVStandard;

DWORD dwFlickerFilter;

DWORD dwOverScanX;

DWORD dwOVerScanY;

DWORD dwMaxUnscaledX;

DWORD dwMaxUnscaledY;

DWORD dwPositionX;

DWORD dwPositionY;

DWORD dwBrightness;

DWORD dwContrast;

DWORD dwCPType; 

DWORD dwCPCommand;

DWORD dwCPStandard;

DWORD dwCPKey;

BYTEbCP_APSTriggerBits;

BYTEbOEMCopyProtection[256];

} VIDEOPARAMETERS, *PVIDEOPARAMETERS, FAR *LPVIDEOPARAMETERS;

To effectively change the current copy protection setting for the TV out function, the dwComm
parameter must be set to VP_COMMAND_SET, and the dwCPCommand parameter to 
VP_CP_CMD_ACTIVATE.  The change is activated by calling ChangeDisplaySettingsEx (se
Example 1-4).  Once copy protection has been enabled, the dwCPKey variable will contain a
protection key value.  This value will need to be set in order to deactivate copy protection by s
dwCPCommand to VP_CP_CMD_DEACTIVATE.

More information regarding the VIDEOPARAMETERS structure and TV out settings can be 
referenced from the Microsoft Windows 98* Driver Design Kit.

Example 2-38. Enabling Copy Protection using the VIDEOPARAMETERS Structure
#include "tvout.h"

DEVMODE dm;

VIDEOPARAMETERSvp;

dm.dmSize = sizeof(DEVMODE);

vp.Guid = vpguid;

vp.dwCommand = VP_COMMAND_GET;

// Get current TV settings

if (ChangeDisplaySettingsEx("\\\\.\\Display1", &dm, 0,

CDS_VIDEOPARAMETERS, &vp) == DISP_CHANGE_SUCCESSFUL)
2-54 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

mory), 
ions 

e 3 
 

eving 
hics 
 host. 
P. 
t 

s to 

tor 
emory. 
rfaces 
trated 
{

vp.dwCommand = VP_COMMAND_SET;

vp.dwCPCommand = VP_CP_CMD_ACTIVATE;

if (ChangeDisplaySettingsEx("\\\\.\\Display1", &dm, 0,

CDS_VIDEOPARAMETERS, &vp) == DISP_CHANGE_SUCCESSFUL)

{

MessageBox(NULL, "Copy protection enabled",

"Notice", MB_OK);

}

else

{

MessageBox(NULL, "Error in Setting Copy Protection",

"Notice", MB_OK);

2.7 2X AGP Interface

For Intel740™ graphics accelerator accesses to the graphics aperture (located in system me
the AGP interface to the host bridge is used. The interface is AGP 1.0 compliant. Bus operat
are permitted in both 1X and 2X mode. Full 2X AGP implementation is integrated into the 
Intel740™ graphics accelerator with sideband operations supporting Type 1, Type 2, and Typ
sideband cycles. Type 3 support permits textures to be located anywhere in the 32-bit system
memory address space. 

Combined with side-band addressing, the Intel740™ graphics accelerator is capable of achi
the highest AGP performance possible. The side-band addressing allows the Intel740™ grap
accelerator to issue requests without having to wait for data to be written or returned from the
Internal buffering within the Intel740™ graphics accelerator accounts for any latency over AG
This buffering allows the various internal pipelines to proceed at full processing speed withou
having to wait for data. 

Using 2X AGP, the various memory surfaces can be stored and executed directly from AGP 
memory (DME). Being executed directly from AGP memory allows an Intel740™ graphics 
accelerator system to store large textures efficiently for very realistic 3D rendering. When 
executing directly from AGP memory, the Intel740™ graphics accelerator orders its accesse
minimize page breaks and maximize memory efficiency.

2.7.1 AGP Primer

The Accelerated Graphics Port (AGP) brings new levels of performance and realism to next-
generation 3D graphics accelerators. The principal benefit comes from the graphics accelera
having high speed access to surface textures and other graphics surfaces in main system m
Special performance oriented AGP features allow much faster read/write access to these su
than has been possible in the past. The basic memory architecture of an AGP system is illus
in Figure 2-25.
Intel740™ Graphics Accelerator Software Developer’s Manual 2-55



Hardware Capabilities

age 
is is 
as 

 are 

eo 

rator, 
ill 
ddress 
Graphics software infrastructure requires that AGP memory be contiguous, which means a p
based system memory must have a graphics address remapping table (GART) capability. Th
because the operating system ordinarily allocates randomly located pages of memory where
graphics software requires its memory to be contiguous. 

The translation facility gives each memory page a second aliased address. All the addresses
adjacent, making this part of system memory closely resemble conventional video memory. 
Memory accessible through the GART is referred to as non-local video memory, meaning vid
memory that is not local to the Intel740™ graphics accelerator. 

Non-local memory can be accessed by the host processor, by the Intel740™ graphics accele
and in current AGP systems by other PCI devices. In future systems, the GART translation w
only be used by AGP graphics devices and the host processor will perform a corresponding a
translation.

Figure 2-25. Intel740™ Graphics Accelerator Connects to System Memory Over AGP

PCI

3.3V/32 b i t  33  MHz

M e m o r y

3.3V/64 b i t

3 .3V EIO

USB
u D M A

E D O  o r  6 6  M H z  S D R A M

Pentium ® II
Processor

D R A M
2X AGP

3.3v /32 b i t  66  MHz

Inte l740™

Graph ics
Accelerator

B IOSAud io
K B C
µcnt l r

Supe r
I/O

PIIX4
3 2 4  M B G A

AGP bus : 6 6  M h z
Pipe l in ing
2X data t ransfers
S ide  Address ing

AGP Memory : GART  remapp ing
Wr i t eComb in ing

AGP bus : 6 6  M H z
Pipe l in ing
2X data t ransfers
S ide  Band Address ing

AGP Memory : GART  remapp ing
Wr i t eComb in ing

2X AGP Advantages

2

82443LX

Intel ®

440LX
AGPset
2-56 Intel740™ Graphics Accelerator Software Developer’s Manual



Hardware Capabilities

on 
r. 
-local 
m. 
ligned 
and 
it set 

 
he 
y 
2.7.2 AGP Software Architecture

DirectDraw applications request space for graphics surfaces by calling the DirectDraw functi
“CreateSurface.” Space for the surface is obtained from heaps defined by the graphics drive
Memory for non-local memory heaps is obtained from the operating system. When more non
video memory is needed, DirectDraw can obtain additional memory from the operating syste
Memory is locked in place and mapped into the proper GART address range. The surface is a
and its memory type established as specified in the graphics heap template. Requests to exp
AGP memory are honored so long as the total amount of AGP memory does not exceed a lim
by the operating system.

Initialization details are attended to at the time the operating system is loaded. The operating
system calls the chipset miniport which initializes AGP port parameters, allocates space for t
GART translation table, initializes the GART hardware, and performs the actual AGP memor
allocation/deallocation. The interaction of these functions is summarized in Figure 2-26.

Figure 2-26. New Services in Windows Work with DirectDraw to Support AGP Applications

Direct 3D*

DirectDraw*

Application

Windows* 95
Operating

System

AGP Chipset
MiniPort

GFx driver

Surface(s)

Heap Attributes

Memory &
Limit Policy

Initialize: AGP port, GART

Runtime: GART management

GART Mapping
Intel740™ Graphics Accelerator Software Developer’s Manual 2-57



Hardware Capabilities

h can 

ile 
s/s 
ced in 
er 
ace 
2.8 BIOS Interface

The Intel740™ graphics accelerator supports a maximum video BIOS size of 256K x 8.   Flas
be used.

2.9 Local Memory

The Intel740™ graphics accelerator uses SDRAM technology and can interface to SGRAM 
through its 64-bit memory interface. Memory Bus speeds range from 66 MHz to100 MHz wh
configurations of 2, 4 and 8 Mbytes are supported. Using a 64-bit interface, up to 800 Mbyte
peak bandwidth is supported. The Intel740™ graphics accelerator allows operands to be pla
either local video memory or AGP memory. It is recommended that the Z, display, and Rend
buffers, video capture and MPeg overlay be located in local video memory, however when sp
becomes limited, the Render buffer should be relocated into AGP memory. 
2-58 Intel740™ Graphics Accelerator Software Developer’s Manual



on to 
ands 
re 
ned to 
the 
 from 

ns as 
n of 
Programming Environment 3

3.1 OpenGL Programming Environment

OpenGL is an application programming interface (API) which is used by a software applicati
interface with the graphics hardware. OpenGL consists of approximately 120 different comm
which are used to specify graphical objects and the operations applied to the objects which a
required by 3D applications. OpenGL is a streamlined, hardware-independent interface desig
make applications portable from one hardware platform to another. For more information on 
OpenGL function commands, see the OpenGL Specification document which can be obtained
the SGI web site at http://www.sgi.com. Also see Section 4.3, “OpenGL Programming 
Implementation” on page 4-27, for the Intel740™ graphics accelerator-specific OpenGL 
performance information.

3.2 OpenGL Drivers

3.2.1 MCD

In the MCD, or Microsoft* Mini Client Driver OpenGL implementation for WindowsNT, the 
operations are split between the Microsoft* portion of the driver (performing such computatio
geometry and lighting, etc.) and the Intel740™ graphics accelerator device-dependent portio
the driver. The MCD architecture is described in Figure 3-1. 

Figure 3-1. MCD Architecture

OpenGL Application

OPENGL32.DLL

MCD32.DLL

GFX40.DLL
Display Driver

MCDSRV32.DLL
(dynamically loaded by the display driver)

CMM AIL

MCD

User Mode

Kernal ModeVia ExtEscape()

Via MCD-provided function pointers

MCDrvGetEntryPoints()

MCDFUNCS escapes are passed to
MCDSRV32.DLL for processing

To Intel740 FIFOsControls Intel740 video

memory usage

AGP
Memory
Intel740™ Graphics Accelerator Software Developer’s Manual 3-1



Programming Environment

ll of 
™ 

l-

ient 
re 
3.2.2 ICD

The ICD, or Independent Client Driver OpenGL implementation for Windows9x, implements a
the OpenGL function calls including lighting and geometry through a combination of Intel740
drivers and the Intel740™ chip. The architecture of the ICD is shown in Figure 3-2.

3.2.2.1 Buffer Allocation

The ICD uses DirectDraw to allocate the back buffer and depth (Z) buffer. Additionally, for ful
screen applications, the ICD automatically obtains “exclusive mode” access to the buffers to 
optimize flip operations (buffer swaps). If enough local video memory is available, the ICD 
automatically uses triple buffering to prevent stalls caused by buffer swaps. If there is insuffic
local video memory to allocate the back buffer(s) or depth buffer, the ICD will resort to softwa
rendering.

Figure 3-2. ICD Architecture

OpenGL Application

OpenGL32.dll

OpenGL API

ICD Library

Frame Buffer

Command buffer to hardware

Software 
rasterization 
when not 
handled by 
Intel740™ 
chip

Software 
rendering for 
unsupported
pixel formats

Microsoft* ICD interface

DDraw for Buffer 
allocation
3-2 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment

t the 
3.2.3 Geometry Operations

The geometry engine within the OpenGL drivers for the Intel740 graphics accelerator suppor
following computations:

• Transformations

• Clipping

• User-defined clipping planes

• Culling

• Lighting

— ColorMaterial

— Two-sided

• Texture Coordinate generation

• Fog computation

In Table 3-1, hardware accelerated operations are shown in bold face.

Table 3-1. Characteristics of Graphics Operations  (Sheet 1 of 2)

Operation Description

Whole Framebuffer 
Operations

Clearing the buffers Back buffer and depth (Z) buffers cleared using the Intel740 chip

Accumulation buffer Accumulation buffer supported in software

Point Rasterization

Single width points Rendered using Intel740 chip, using the line primitive

Wide points Rendered using Intel740 chip, using the triangle primitive

Anti-aliased points Rendered in software

Line Rasterization

Single width lines Rendered using Intel740 chip

Wide lines Rendered using Intel740 chip

Anti-aliased lines Rendered in software

Stippled lines Rendered in software

Triangle Rasterization

Polygon Stippling Rendered using Intel740 chip

Polygon Smoothing ignored

Polygon culling Hardware compatible culling to avoid cracks is done in software for 
maximum performance

Polygon mode The Intel740 driver determines the rendering of triangles as either 
FILL, LINE or POINT mode, and then uses the Intel740 chip hardware.
Intel740™ Graphics Accelerator Software Developer’s Manual 3-3



Programming Environment
NOTE:
1. On Windows NT, The MCD allocates a separate front buffer per application.

Fragment Operations

Fog Linearly interpolated fog factors are supported using Intel740 chip

Textures Perspective-correct interpolation of texture coordinates using 
Intel740 chip

Ownership test

Back buffers and depth (Z) buffers are exclusively owned by each 
application, so no ownership test is needed; however, the front buffer can 
be overwritten by other windows. Front buffer rendering is performed by the 
Intel740 chip whenever the front buffer is not occluded by other windows.

Scissor test
Optimized for rendering by the Intel740 chip whenever possible. Primitives 
that expand upon rasterization (i.e., wide lines) are not supported by 
hardware rendering when scissoring is ON.

Alpha test Supported by Intel740 chip

Stencil test Supported by the software renderer

Depthbuffer test Supported by Intel740 chip

Alpha blending All blend modes are supported by Intel740 chip

Dithering Supported by Intel740 chip

Logical operations Supported by the software renderer

Stencil operations Supported by the software renderer

Buffer Write Controls

RGB masking buffers
When (R=0, G=0, B=0) and (R=1, G=1, B=1), glColorMask is supported by 
the Intel740 chip. Other combinations are supported by the software 
renderer.

Depth buffer write mask glDepthMask is supported by Intel740 chip.

DrawBuffer

NONE: supported by Intel740 chip.

FRONT_AND_BACK: supported by software renderer.

FRONT: front buffer rendering is done using the Intel740 chip when the 
front buffer is not occluded by other windows.

BACK: supported by Intel740 chip.

Texture Mapping

Image formats supported A4, L6, L4A4, R5G6B5, R4G4B4A4.

Texture environment
Supports all OpenGL texture environment modes except GL_BLEND, 
which is supported only if the internal format of the texture image is 
GL_ALPHA.

GL_TEXTURE_MAG_FILTER Supported by Intel740 chip.

GL_TEXTURE_MIN_FILTER

All filters except GL_LINEAR_MIPMAP_LINEAR and 
GL_NEAREST_MIPMAP_LINEAR are supported by Intel740 chip. 
GL_LINEAR_MIPMAP_LINEAR and GL_NEAREST_MIPMAP_LINEAR 
are supported using texture dithering in the Intel740 chip.

Texture border Ignored

Table 3-1. Characteristics of Graphics Operations  (Sheet 2 of 2)

Operation Description
3-4 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment

he 

cs 

er, 
w 

* 
es 
e 

rnal 
I 
t 
ator 
river. 
3.3 DirectX Programming Environment

This chapter explains the relationship between the Intel740™ graphics accelerator API and t
Microsoft Windows* support driver environment (Microsoft Windows95*/Windows98*/
WindowsNT* 5.0). References are made to existing standards documents. Intel740™ graphi
accelerator extensions or behaviors that differ from the standard are described in detail.

The Intel740™ graphics accelerator video support drivers include DirectDraw* (Overlay) driv
DirectDraw VPE driver, and VBI Capture VxD. The Intel740™ graphics accelerator DirectDra
Driver (DDHAL/DDHAL VPE) interfaces with the following external entities: Microsoft DirectX
API, and AGP Memory driver. The Intel740™ graphics accelerator VBI Capture VxD interfac
with the Intel VBI Decoder VxD, DDHAL VPE driver, AGP Memory driver. Table 3-3 shows th
Intel740™ graphics accelerator driver architecture.

The Intel740™ graphics accelerator Direct3D device driver interfaces with the following exte
entities: Microsoft DirectX API, Intel740™ graphics accelerator 2D display driver, WIN32 GD
Escape Mechanism, Windows 95 Registry, and AGP Memory driver. The Configuration Apple
along with any Diagnostic/Test applications will interface with the Intel740™ graphics acceler
Direct3D device driver through the GDI device-dependent graphics escapes defined by the d
Figure 3-3 shows the Intel740™ graphics accelerator Direct3D driver architecture.

Figure 3-3.  Intel740™ Graphics Accelerator Software Architecture

Direct Video* Active Movie

DirectDraw* DirectDraw VPEGDI Direct3D*

Stream Decoder (s)

Microsoft*

Intercast Stack

VBI Decode VxD

Ring 3

Ring 0

Intel Intercast

Win* 32 Applications

GDI Driver DDHAL / DDHAL VPE D3D HAL VBI Capture VxD

Intel740 Chip Hardware
Intel740™ Graphics Accelerator

Intel740™ Graphics Accelerator
Intel740™ Graphics Accelerator Software Developer’s Manual 3-5



Programming Environment
3.4 Windows Display Driver

3.4.1 Mini Display Driver

3.4.1.1 Structures Exported to GDI

Table 3-2. Device Technology —dpTechnology  (Sheet 1 of 2)

Function Supported

DT_PLOTTER(0)

DT_RASDISPLAY(1) ✓

DT_RASPRINTER (2)

Raster Capabilities —dpRaster

RC_BITBLT (0001h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_BANDING (0002h) 

RC_SCALING (0004h) 

RC_SAVEBITMAP (0040h) 

RC_PALETTE (0100h) ✓ (8 BPP)

RC_DIBTODEV (0200h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_BIGFONT (0400h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_STRETCHBLT (0800h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_FLOODFILL (1000h) 

RC_STRETCHDIB (2000h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_DEVBITS (8000h) ✓ (8 BPP, 16 BPP, 24BPP)

Level of text support the device driver provides —dpText

TC_OP_CHARACTER (0001h) 

TC_OP_STROKE (0002h) 

TC_CP_STROKE (0004h) ✓

TC_CR_90 (0008h) 

TC_CR_ANY (0010h) 

TC_SF_X_YINDEP (0020h) 

TC_SA_DOUBLE (0040h) 

TC_SA_INTEGER (0080h)

 TC_SA_CONTIN (0100h) 

TC_EA_DOUBLE (0200h)

TC_IA_ABLE (0400h)

TC_UA_ABLE (0800h)

 TC_SO_ABLE (1000h)

TC_RA_ABLE (2000h) ✓

 TC_VA_ABLE (4000h)
3-6 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment
Additional raster abilities—dpCaps1

 C1_TRANSPARENT (0001h) 

TC_TT_ABLE (0002h) 

 C1_TT_CR_ANY (0004h) 

C1_EMF_COMPLIANT (0008h)

 C1_DIBENGINE (0010h) ✓

C1_GAMMA_RAMP (0020h) ✓

C1_ICM (0040h) 

C1_REINIT_ABLE (0080h)

C1_GLYPH_INDEX (0100h) ✓

C1_BIT_PACKED (0200h) 

C1_BYTE_PACKED (0400h) ✓

C1_COLORCURSOR (0800h) ✓

C1_CMYK_ABLE (1000h)

C1_SLOW_CARD (2000h) 

Polyline and line-drawing capabilities—dpLines

LC_POLYGONSCANLINE (0001h) ✓

LC_POLYLINE (0002h) ✓

LC_WIDE (0010h) 

LC_STYLED (0020h) ✓

LC_WIDESTYLED (0040h) 

LC_INTERIORS (0080h)

Polygon-, rectangle-, and scan-line drawing capabilities- dpPolygonals

PC_ALTPOLYGON (0001h) ✓

PC_RECTANGLE (0002h)

PC_WINDPOLYGON (0004h) 

PC_SCANLINE (0008h) ✓

PC_WIDE (0010h) 

PC_STYLED (0020h)

PC_WIDESTYLED (0040h) 

PC_INTERIORS (0080h) ✓

PC_POLYPOLYGON (0100h) 

PC_PATHS (0200h)

Table 3-2. Device Technology —dpTechnology  (Sheet 2 of 2)

Function Supported
Intel740™ Graphics Accelerator Software Developer’s Manual 3-7



Programming Environment

 cover 

w 
3.5 DirectDraw Display Driver Interface

This section explains the interfaces of Intel740™ graphics accelerator 2D drivers. It does not
the whole 2D driver interface, since it is already defined by Microsoft* in the Windows95* or 
Windows98* DDK. This section specifies the interfaces of display driver, mini-VDD, DirectDra
HAL, DirectDraw VPE HAL and version information.

3.5.1 Directdraw Hal Capabilities

Table 3-3. dwCaps—Specifies Driver-Specific Capabilities 

Function Supported

DDCAPS_3D ✓

DDCAPS_ALIGNBOUNDARYDEST

DDCAPS_ALIGNBOUNDARYSRC

DDCAPS_ALIGNSIZEDEST

DDCAPS_ALIGNSIZESRC

DDCAPS_ALIGNSTRIDE 

DDCAPS_ALPHA

DDCAPS_BANKSWITCHED

DDCAPS_BLT ✓

DDCAPS_BLTCOLORFILL ✓

DDCAPS_BLTDEPTHFILL ✓

DDCAPS_BLTFOURCC

DDCAPS_BLTQUEUE

DDCAPS_BLTSTRETCH 

DDCAPS_CANBLTSYSMEM ✓

DDCAPS_CANCLIP

DDCAPS_CANCLIPSTRETCHED

DDCAPS_COLORKEY ✓

DDCAPS_COLORKEYHWASSIST

DDCAPS_GDI ✓

DDCAPS_NOHARDWARE

DDCAPS_OVERLAY ✓

DDCAPS_OVERLAYCANTCLIP ✓

DDCAPS_OVERLAYFOURCC ✓ (YUV4:2:2, RBG555 and RGB565)

DDCAPS_OVERLAYSTRETCH ✓

DDCAPS_PALETTE 

DDCAPS_PALETTEVSYNC

DDCAPS_READSCANLINE ✓

DDCAPS_STEREOVIEW

DDCAPS_VBI

DDCAPS_ZBLTS

 DDCAPS_ZOVERLAYS

DDCAPS_ZOVERLAYS 
3-8 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment
Table 3-4. dwCaps2—Specifies More Driver-Specific Capabilities

Function Supported

DDCAPS2_CERTIFIED 

DDCAPS2_NO2DDURING3DSCENE

DDCAPS2_VIDEOPORT ✓

DDCAPS2_AUTOFLIPOVERLAY ✓

DDCAPS2_CANBOBINTERLEAVED ✓

DDCAPS2_WIDESURFACES ✓

DDCAPS2_NOPAGELOCKREQUIRED

Table 3-5. dwCKeyCaps—Color Key Capabilities 

Function Supported

DDCKEYCAPS_DESTBLT ✓

DDCKEYCAPS_DESTBLTCLRSPACE 

DDCKEYCAPS_DESTBLTCLRSPACEYUV 

DDCKEYCAPS_DESTBLTYUV 

DDCKEYCAPS_DESTOVERLAY ✓

DDCKEYCAPS_DESTOVERLAYCLRSPACE 

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV 

DDCKEYCAPS_DESTOVERLAYONEACTIVE ✓

DDCKEYCAPS_DESTOVERLAYYUV ✓

DDCKEYCAPS_NOCOSTOVERLAY ✓

DDCKEYCAPS_SRCBLT ✓

DDCKEYCAPS_SRCBLTCLRSPACE 

DDCKEYCAPS_SRCBLTCLRSPACEYUV 

DDCKEYCAPS_SRCBLTYUV 

DDCKEYCAPS_SRCOVERLAY 

DDCKEYCAPS_SRCOVERLAYCLRSPACE 

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV 

DDCKEYCAPS_SRCOVERLAYONEACTIVE 

DDCKEYCAPS_SRCOVERLAYYUV 
Intel740™ Graphics Accelerator Software Developer’s Manual 3-9



Programming Environment
Table 3-6. dwFXCaps—Specifies Driver-Specific Stretching and Effects Capabilities 

Function Supported

DDFXCAPS_BLTARITHSTRETCHY 

DDFXCAPS_BLTARITHSTRETCHYN 

DDFXCAPS_BLTMIRRORLEFTRIGHT 

DDFXCAPS_BLTMIRRORUPDOWN 

DDFXCAPS_BLTROTATION 

DDFXCAPS_BLTROTATION90 

DDFXCAPS_BLTSHRINKX 

DDFXCAPS_BLTSHRINKXN 

DDFXCAPS_BLTSHRINKY 

DDFXCAPS_BLTSHRINKYN 

DDFXCAPS_BLTSTRETCHX ✓

DDFXCAPS_BLTSTRETCHXN 

DDFXCAPS_BLTSTRETCHY ✓

DDFXCAPS_BLTSTRETCHYN 

DDFXCAPS_OVERLAYARITHSTRETCHY ✓

DDFXCAPS_OVERLAYARITHSTRETCHYN 

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT 

DDFXCAPS_OVERLAYMIRRORUPDOWN 

DDFXCAPS_OVERLAYSHRINKX 

DDFXCAPS_OVERLAYSHRINKXN 

DDFXCAPS_OVERLAYSHRINKY 

DDFXCAPS_OVERLAYSHRINKYN 

DDFXCAPS_OVERLAYSTRETCHX ✓

DDFXCAPS_OVERLAYSTRETCHXN 

DDFXCAPS_OVERLAYSTRETCHY ✓

DDFXCAPS_OVERLAYSTRETCHYN 

Table 3-7. dwPalCaps—Specifies Palette Capabilities 

Function Supported

DDPCAPS_1BIT ✓

DDPCAPS_2BIT ✓

DDPCAPS_4BIT ✓

DDPCAPS_8BIT ✓

DDPCAPS_8BITENTRIES 

DDPCAPS_ALLOW256 

DDPCAPS_PRIMARYSURFACE 

DDPCAPS_PRIMARYSURFACELEFT 

DDPCAPS_VSYNC 
3-10 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment
Table 3-8. ddsCaps.dwCaps—Specifies The Capabilities Of The Surface 

Function Supported

DDSCAPS_3D ✓ (Enabled if 3D is detected)

DDSCAPS_3DDEVICE ✓

DDSCAPS_ALLOCONLOAD ✓

DDSCAPS_ALPHA 

DDSCAPS_BACKBUFFER ✓

DDSCAPS_COMPLEX ✓

DDSCAPS_FLIP ✓

DDSCAPS_FRONTBUFFER ✓

DDSCAPS_HWCODEC 

DDSCAPS_LIVEVIDEO ✓

DDSCAPS_MIPMAP ✓

DDSCAPS_MODEX ✓

DDSCAPS_OFFSCREENPLAIN ✓

DDSCAPS_OVERLAY ✓

DDSCAPS_OWNDC 

DDSCAPS_PALETTE ✓

DDSCAPS_PRIMARYSURFACE ✓

DDSCAPS_PRIMARYSURFACELEFT 

DDSCAPS_SYSTEMMEMORY ✓

DDSCAPS_TEXTURE ✓

DDSCAPS_VIDEOMEMORY ✓

DDSCAPS_VISIBLE ✓

DDSCAPS_WRITEONLY 

DDSCAPS_ZBUFFER ✓

DDSCAPS_NONLOCALVIDMEM ✓
Intel740™ Graphics Accelerator Software Developer’s Manual 3-11



Programming Environment
3.6 Direct3D Interface

3.6.1 Supported Direct3D Capabilities

Table 3-9. General Device Capabilities 

Function Supported

Device Color Model

RGB ✓

Mono ✓

Device Capabilities

FloatTLVertex ✓

SortIncreasingZ

SortDecreasingZ

SortExact

ExecuteSystemMemory

ExecuteVideoMemory

TLVertexSystemMemory

TLVertexVideoMemory

TextureSystemMemory

TextureVideoMemory ✓

Transform Capabilities

Clip

Lighting Capabilities

RGBModel

MonoModel

Point

Spot

Directional

ParallelPoint

GLSpot

Clipping

True

False ✓

Render Bit Depth

16-bit ✓

Z Buffer Bit Depth

16-bit ✓
3-12 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment
Table 3-10. Texture Capabilities

Format Width Height Bits Per 
Texel R/Y Mask G/U Mask B/V Mask Alpha Mask

RGB 565 1024 1024 16 F800h 07E0h 001Fh 0000h

RGBa 5551 1024 1024 16 7C00h 03E0h 001Fh 8000h

RGBa 4444 1024 1024 16 0F00h 00F0h 000Fh F000h

YUV 422 1024 1024 8 F0h 0Ch 03h 00h

Palette Indexed 1 1024 1024 1

Palette Indexed 2 1024 1024 2

Palette Indexed 4 1024 1024 4

Palette Indexed 8 1024 1024 8

Table 3-11. Primitive Capabilities Supported  (Sheet 1 of 3)

Capability Lines Triangles

Misc. Capabilities

MaskPlanes

MaskZ ✓ ✓

LinePatternRep

Conformant

CullNone ✓

CullCW ✓

CullCCW ✓

Raster Capabilities

Dither ✓ ✓

Rop2

Xor

Pat

Ztest ✓ ✓

Subpixel ✓ ✓

SubpixelX

FogVertex ✓ ✓

FogTable

Stipple ✓ ✓

Z/AlphaCompare Capabilities  Z / Alpha Z / Alpha

Never ✓ / ✓ ✓ / ✓

Less ✓ / ✓ ✓ / ✓

Equal ✓ / ✓ ✓ / ✓

LessEqual ✓ / ✓ ✓ / ✓

Greater ✓ / ✓ ✓ / ✓
Intel740™ Graphics Accelerator Software Developer’s Manual 3-13



Programming Environment
NotEqual ✓ / ✓ ✓ / ✓

GreaterEqual ✓ / ✓ ✓ / ✓

Always ✓ / ✓ ✓ / ✓

Source/Destination Blend Capabilities Src / Dst Src / Dst

Zero ✓ / ✓ ✓ / ✓

One ✓ / ✓ ✓ / ✓

SrcColor ✓ / ✓ ✓ / ✓

InvSrcColor ✓ / ✓ ✓ / ✓

SrcAlpha ✓ / ✓ ✓ / ✓

IncSrcAlpha ✓ / ✓ ✓ / ✓

DestAlpha

InvDestAlpha

IncSrcAlpha ✓ / ✓ ✓ / ✓

InvDestColor ✓ / ✓ ✓ / ✓

SrcAlphaSat

BothSrcAlpha ✓ / ✓ ✓ / ✓

BothInvSrcAlpha ✓ / ✓ ✓ / ✓

Shade Capabilities

ColorFlatMono ✓ ✓

ColorFlatRGB ✓ ✓

ColorGouraudMono ✓ ✓

ColorGouraudRGB ✓ ✓

ColorPhongMono

ColorPhongRGB

SpecularFlatMono ✓ ✓

SpecularFlatRGB ✓ ✓

SpecularGouraudMono ✓ ✓

SpecularGouraudRGB ✓ ✓

SpecularPhongMono

SpecularPhongRGB

AlphaFlatBlend ✓ ✓

AlphaFlatStippled ✓ ✓

AlphaGouraudBlend ✓ ✓

AlphaGouraudStippled

AlphaPhongBlend

AlphaPhongStippled

FogFlat ✓ ✓

FogGouraud ✓ ✓

Table 3-11. Primitive Capabilities Supported  (Sheet 2 of 3)

Capability Lines Triangles
3-14 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment
FogPhong

Texture Capabilities

Perspective ✓ ✓

Pow2 ✓ ✓

Alpha ✓ ✓

Transparency ✓ ✓

Border

SquareOnly

Texture Filter Capabilities

Nearest ✓ ✓

Linear ✓ ✓

MipNearest ✓ ✓

MipLinear ✓ ✓

LinearMipNearest ✓ ✓

LinearMipLinear ✓ ✓

Texture Blend Capabilities

Decal ✓ ✓

Modulate ✓ ✓

DecalAlpha ✓ ✓

ModulateAlpha ✓ ✓

DecalMask ✓ ✓

ModulateMask

Copy ✓ ✓

Texture Address Capabilities

Wrap ✓ ✓

Mirror ✓ ✓

Clamp ✓ ✓

Table 3-11. Primitive Capabilities Supported  (Sheet 3 of 3)

Capability Lines Triangles
Intel740™ Graphics Accelerator Software Developer’s Manual 3-15



Programming Environment
3.6.2 Supported RenderState 

Table 3-12. DIRECT3D RenderState Hardware / Software Support  (Sheet 1 of 3)

State Supported 
in SW

Supported 
in HW Values Notes

ALPHAFUNC ✓ ✓

NEVER

LESS

EQUAL

LESSEQUAL

GREATER

NOTEQUAL

GREATEREQUAL

ALWAYS

ALPHAREF ✓ ✓ 8-bit value

ALPHATESTENABLE ✓ ✓ TRUE / FALSE

ANTIALIAS ✓ ✓
SORTDEPENDENT / 
SORTINDEPENDENT 

ALPHABLENDENABLE ✓ ✓ TRUE / FALSE

CULLMODE ✓ ✓

NONE

CW

CCW

DESTBLEND ✓ ✓

ZERO

ONE

SRCCOLOR

INVSRCCOLOR

SRCALPHA

INVSRCALPHA

DESTCOLOR

INVDESTCOLOR

BOTHSRCALPHA

BOTHINVSRCALPHA

DITHERENABLE ✓ ✓ TRUE / FALSE

FILLMODE ✓ ✓
WIREFRAME - 

SOLID 

FOGENABLE ✓ ✓ TRUE / FALSE

FOGCOLOR ✓ ✓
lower 24-bits of a 32-bit 
value

FOGTABLEDENSITY NO NO

FOGTABLEEND NO NO

FOGTABLEMODE NO NO

FOGTABLESTART NO NO

LASTPIXEL NO NO TRUE / FALSE

LINEPATTERN NO NO 32-bit value

MONOENABLE ✓ ✓ TRUE / FALSE

PLANEMASK NO NO 32-bit value
3-16 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment
ROP2 NO NO

SHADEMODE ✓ ✓
FLAT

GOURAUD

SPECULARENABLE ✓ ✓ TRUE / FALSE

SRCBLEND ✓ ✓

ZERO

ONE

SRCCOLOR

INVSRCCOLOR

SRCALPHA

INVSRCALPHA

DESTCOLOR

INVDESTCOLOR

BOTHSRCALPHA

BOTHINVSRCALPHA

STIPPLEDALPHA NO NO

STIPPLEENABLE ✓ ✓ TRUE / FALSE

STIPPLEPATTERN00-31 ✓ ✓ 32-bit values

SUBPIXEL NO NO

SUBPIXELX NO NO

TEXTUREADDRESS ✓ ✓

WRAP

MIRROR

CLAMP

TEXTUREHANDLE ✓ ✓ 32-bit value

TEXTUREMAG ✓ ✓

NEAREST

LINEAR

MIPNEAREST

MIPLINEAR

LINEARMIPNEAREST

LINEARMIPLINEAR

TEXTUREMAPBLEND ✓ ✓

DECAL

MODULATE

DECALALPHA

MODULATEALPHA

DECALMASK

COPY

TEXTUREMIN ✓ ✓

NEAREST

LINEAR

MIPNEAREST

MIPLINEAR

LINEARMIPNEAREST

LINEARMIPLINEAR

TEXTURE 
PERSPECTIVE ✓ ✓ TRUE 

Table 3-12. DIRECT3D RenderState Hardware / Software Support  (Sheet 2 of 3)

State Supported 
in SW

Supported 
in HW Values Notes
Intel740™ Graphics Accelerator Software Developer’s Manual 3-17



Programming Environment
3.6.3 Supported RenderPrimitives

WRAPUV ✓ ✓ TRUE / FALSE

WRAPV ✓ ✓ TRUE / FALSE

ZENABLE ✓ ✓ TRUE / FALSE

ZFUNC ✓ ✓

NEVER

LESS

EQUAL

LESSEQUAL

GREATER

NOTEQUAL

GREATEREQUAL

ALWAYS

ZVISIBLE NO NO TRUE / FALSE

ZWRITEENABLE ✓ ✓ TRUE / FALSE

Table 3-13. DIRECT3D RenderPrimitive Hardware / Software Support

Primitive Supported in 
SW

Supported in 
HW Notes

POINT ✓ NO Implemented as a 0 length line

LINE ✓ ✓

TRIANGLE ✓ ✓

SPAN ✓ NO Implemented with a line

STRIP ✓ NO Implemented with a triangle

FAN ✓ NO Implemented with a triangle

Table 3-12. DIRECT3D RenderState Hardware / Software Support  (Sheet 3 of 3)

State Supported 
in SW

Supported 
in HW Values Notes
3-18 Intel740™ Graphics Accelerator Software Developer’s Manual



Programming Environment

re 
3.7 Video Interface

All VfW Capture Messages are supported by the Intel740™ graphics accelerator video captu
driver.

Table 3-14. VfW Capture Driver Capability 

VfW Capture Message Supported

DRV_LOAD ✓

DRV_FREE ✓

DRV_OPEN ✓

DRV_CLOSE ✓

DRV_ENABLE ✓

DRV_DISABLE ✓

DRV_QUERYCONFIGURE ✓

DRV_CONFIGURE ✓

DRV_INSTALL ✓

DRV_REMOVE ✓

DRV_GETVIDEOAPIVER ✓

DVM_GETERRORTEXT ✓

DVM_DIALOG ✓

DVM_PALETTE ✓

DVM_FORMAT ✓

DVM_PALETTERGB555 ✓

DVM_SRC_RECT ✓

DVM_DST_RECT ✓

DVM_UPDATE ✓

DVM_CONFIGURE_STORAGE ✓

DVM_FRAME ✓

DVM_GET_CHANNEL_CAPS ✓

DVM_STREAM_INIT ✓

DVM_STREAM_FINI ✓

DVM_STREAM_GETERROR ✓

DVM_STREAM_GETPOSITION ✓

DVM_STREAM_ADDBUFFER ✓

DVM_STREAM_PREPAREHEADER ✓

DMV_STREAM_UNPREPAREHEADER ✓

DVM_STREAM_RESET ✓

DVM_STREAM_START ✓

DVM_STREAM_STOP ✓
Intel740™ Graphics Accelerator Software Developer’s Manual 3-19



Programming Environment

llows 
ring. 

italic 
3.8 GDI Escape Interface

The Intel740™ graphics accelerator Direct3D Driver supports the GDI Escape interface that a
dynamic alterations of operational parameters as well as debugging and performance monito
Access to these device capabilities which are specific to Intel740™ graphics accelerator 3D 
functionality is achieved using the following function call:
ExtEscape( HDC,  //handle to Windows device context

int, //Intel740™ graphics accelerator 3D escape function number (1234h)

int, //number of bytes in input structure

LPCSTR, //pointer to input structure

//typedef struct AubControlInBuffer

//   { DWord EscapeNumber;

// DWordSubFunction;

// DWordDataPointer;

//    }

int, //number of bytes in output structure

LPSTR); //pointer to output structure 

//   typedef struct AubControlOutBuffer

//   { DWordEscapeNumber;

// DWordSubFunction;

// DWordDataPointer;

//    }

The following sections define the available subfunctions along with a definition for each 
DataPointer associated with the input and/or output structures. Data types which are in bold 
text are defined by Microsoft* in the DirectX documentation. 

Table 3-15. Functionality Control

Sub-function Description AubControlInBuffer Data AubControlOutBuffer 
Data

101h Set State Variable

DWord StateNumber

01h-FFh - As defined by 
D3DRENDERSTATETYPE

100h - Texture LOD Bias

101h - Texture LOD Dither 
weight

102h - Alpha in Z buffer

103h - QWord fetch mode

DWord StateValue

void

102h Set Capabilities D3DDEVICEDESC   
D3Dcapabilities void

103h Get Capabilities void D3DDEVICEDESC 
D3Dcapabilities

10Ah Get AGP Config 
Registers void DWord  Reg[3]

Table 3-16. Device Driver Debugging Control

Sub-function Description AubControlInBuffer Data AubControlOutBuffer 
Data

200h Set Debug Logging Level
DWord  Level

0..MaxDebugLevel
void
3-20 Intel740™ Graphics Accelerator Software Developer’s Manual



ing 

etric) 
a 
ed for 

ess 

s. 3D 
hics 

les per 
r scene 
nder 

h 
nd 
Performance Considerations 4

This chapter describes programming approaches to maximize performance, reports
Intel740™ graphics accelerator performance test results, and introduces creative programm
techniques which take advantage of the Intel740™ graphics accelerator chip features.

4.1 Performance Strategies And Measurements

All performance statistics outlined in this section were gathered using Intel’s RasM (Raster M
2.0 software. RasM, a raster speed measurement tool, measures the rasterization speed of 
hardware accelerator vs. the scene complexity of an application. The system configuration us
gathering the data shown in this document is as follows:

• 300 MHz Pentium® II processor with MMX™ technology

• Atlanta motherboard with PhoenixBIOS*

• Intel® 440LX AGPset

• Intel740™ graphics accelerator AGP graphics card with 200 BIOS 

• Windows95 operating system (OSR2.1)

• 64 Mbytes system memory (SDRAM, 66 MHz)

• 4 Mbyte local video memory (SDRAM, 100 MHz)

• 640x480x16 bits per pixel screen resolution

• D3D test use execute buffers and OpenGL tests use vertex buffers with glDrawArray unl
otherwise specified

• 60 Hz refresh rate

4.1.1 Intel740™ Graphics Accelerator Performance Capabilities

The Intel740™ graphics accelerator supports the next generation of high-content application
games will use more realistic models with more triangles of smaller size. The Intel740™ grap
accelerator provides its peak performance for these types of games.

The recommended game detail target for the Intel740™ graphics accelerator is 10,000 triang
frame, between 75 and 175 pixels per triangle, at 30 frames per second. 10,000 triangles pe
requires a triangle rate of approximately 300,000. The Intel740™ graphics accelerator can re
366,000 full featured triangles per second with an average of 105 pixels per triangle.

Required_Tri_Per_Sec =Tri_Per_Scene / (1/Frames_per_Second - Tover_head)

The following sections include Intel740™ graphics accelerator performance results along wit
descriptions of how the results can be used to predict frame rates for particular applications a
scene complexities.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-1



Performance Considerations

0™ 
 be 
he 
ing, 
 the 

PU. 
ided 
 
ols 

 
oftware 
phics 

ng one 

ation 
se the 
 flip 

the 
ms 
ne. 
4.1.2 Using CPU/Intel740™ Graphics Accelerator Concurrency

Applications should be designed to take advantage of the concurrency allowed by the Intel74
graphics accelerator and AGP system architecture. The Intel740™ graphics accelerator can
thought of as a second processor for rasterization, optimized for maximum parallelism with t
CPU. The benefit given to the application is that the CPU is free to do more AI, physics, light
and geometry. The Intel740™ graphics accelerator drivers minimize CPU overhead, balance
system, and allow for maximum system concurrency.

Many of the performance results included in this chapter report the driver duty cycle for the C
The duty cycle is the ratio of CPU time used by the Intel740™ graphics accelerator driver div
by the length of time the Intel740™ graphics accelerator requires to render the scene. It is a
measure of how much times an application can spend on lighting, geometry, and game contr
while not causing the CPU to limit performance.

In systems with software rasterization only, a typical application used 90% of CPU cycles for
rasterization alone. Because the Intel740™ graphics accelerator renders much faster than s
engines and because of the system’s available concurrency, a system with an Intel740™ gra
accelerator gains a tremendous performance advantage.

Figure 4-1 shows the usage model for the Intel740™ graphics accelerator and the CPU duri
and a half frames of a typical application cycle.

Applications should be structured such that CPU cycles are not wasted waiting for synchroniz
with the Intel740™ graphics accelerator. Forcing flips or blits to surfaces being rendered cau
CPU to sit idle until rendering has completed. Figure 4-2 illustrates how an improperly placed
or blit can drastically reduce frame rate.

In this case, only minimal concurrency is achieved. The problem can be alleviated by simply 
rearranging the flow so that the CPU processing for the following frame is completed before 
render target is flipped. The problem can also be alleviated by triple-buffering. Similar proble
will be seen by code that issues blit commands for 2D effects directly after sending a 3D sce

Figure 4-1. Intel740™ Graphics Accelerator/CPU Usage Model

CPU Intel740 Driver Game Control Light & Geom. Intel740 Driver Game Controls…

Intel740 chip Raster Triangles Raster Triangles….

One Frame

Figure 4-2. Improper Usage Model

CPU Game Control  Light & Geom.  Intel740 Driver …CPU Idle…

Intel740 Chip …Intel740 Chip Idle… Raster Triangles

One Frame

Request Flip  Flip Occurs
4-2 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

 
etry, 
 To 
uring 

 
 goal. 
d 50% 

out 

 10 
ngle 

 of the 
he 
ene. 
plying 
re 
d 
d 20% 

angles 
4.1.3 Performance Test Results

4.1.3.1 Raster Speed Test Method

This section describes the tests used to measure the performance numbers reported in this 
document.

Figure 4-3 shows the system usage while RasM is running. The time that RasM waits for the
Intel740™ graphics accelerator to complete will be used for AI, game control, lighting, geom
and anything else the application needs to do before sending the next frame to be rendered.
attain the maximum frame rate, applications should be optimized to finish all computations d
this time.

The program execution can be divided into two phases called consecutively by a loop that 
sequences through all the triangle sizes to be tested:

Loop (for all triangle sizes do)
Phase 1: Build buffers (execute buffer, vertex arrays, etc.)
Phase 2: Execute the buffers and time the hardware

The first phase creates and fills execute buffers with 512 triangles each. The total number of
triangles depends on triangle size, depth complexity (DC) goal, and percent Z-buffering (%Z)
Unless otherwise stated, the sweeps reported in this document have a constant DC of 2.5 an
Z across the triangle size sweeps. For example, the 120 pixel/triangle data point contains ab
13,300 randomly distributed triangles per scene: 

Triangles_per_Scene = (Screen.W * Screen.H * Avg_DC_Goal / Percent_Z_Goal) / Pix_per_Tri

To achieve a predefined DC and %Z goal, a “survival of the fittest” algorithm is implemented:
randomly placed and oriented triangles are generated for each required triangle, and the tria
that brings the scene the closest to its DC and %Z goals is selected.

Game scenes often have some percentage of triangles use specular and alpha blend. Many
sweeps in this document test scenes with specular and blend enabled for only a fraction of t
triangles. RasM always puts the triangles with specular and blend in the last portion of the sc
The rationale here is that games using only a small percent specular or alpha blend will be ap
highlights to the scene near the end of their triangle lists. Unless otherwise stated, textures a
mipmapped with 16-bit color. When multiple textures are used in a scene, they are distribute
equally throughout the scene. A scene with 10,000 triangles, three textures, 30% specular, an
alpha blend would generate 20 execute buffers, 3,400 triangles per texture; the last 2,000 tri
would use specular and alpha blend, and the preceding 1,000 would use just specular.

Figure 4-3. RasM Intel740™ Graphics Accelerator/CPU Usage Model

CPU Intel740 Driver ...Waiting for Intel 740 Chip...  Intel740 Driver …Waiting…

Intel740 Chip Raster Triangles Raster Triangles...

One Frame
Intel740™ Graphics Accelerator Software Developer’s Manual 4-3



Performance Considerations

s the 
he 
 

weeps, 
It is 
iled 

h 
sic 
eeps 
The second phase of the loop executes the buffers created in the first phase, and then clock
driver and hardware raster speed. The scene is clocked, displayed, and recorded 15 times; t
middle five times are averaged to get the final result. Figure 4-4 shows pseudo-code from the
timing/display loop.

The reported results are divided into sections: Result Summary, Basic Sweeps, Advanced S
and Full Sweeps. The Result Summary contains data taken directly from the set of sweeps. 
intended to be used as a summary or for quick reference. Section 4.1.3.2 contains more deta
information that can be used to predict application frame rates. 

The basic sweep compares Gouraud only to Gouraud with Z-Buffer and, finally, Gouraud wit
Z-Buffer and Textures (GZT). The advanced sweeps takes the GZT features from the last ba
sweep and tests the sensitivity to fog, alpha blending, specular, and anti-aliasing. The full sw
combine all features.

Figure 4-4. RasM Pseudo-Code

T0:

T1:

T2:

∆T2

∆T1

For All Execute Exec(…)
EndScene()

RenderBuffer Lock(…)

Triangles_per_Second = (Triangles_per_Scene) / ∆T2

Pixels_per_Second = (Triangles_per_Scene) * Pix_per_Triangle / ∆T2

Duty Cycle = ∆T1 / ∆T2

Table 4-1. Result Summary

Gouraud Fog Blend Spec Anti-
Alias

Z-Buff
50% Z

MipMap
16 BBP

Set-up
Limited

(Triangles per 
Second)

105 PixTri 
(Triangles per 

Second)

Fill Rate
(Pixels per 
Second)

X 675k 482k 65.7M

X X 672k 385k 59.1M

X X X 577k 349k 54.2M

X X X X 535k 349k 53.8M

X 20% X X 568k 340k 53.8M

X 100% X X 535k 300k 48.2M

X 30% X X 539k 348k 53.7M

X 100% X X 468k 347k 54.2M

X 20% X X 372k 253k 51.4M

X X 20% 30% X X 496k 338k 53.2M

X X 100% 100% X X 415k 298k 48.0M
4-4 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations
Table 4-2. Symbol Key

Symbol Definition

G  Gouraud Shading

Fg  Vertex Fog Enabled 100% of Scene

A20 and A100  Alpha Blend Enabled for 20% and 100% of Scene

S30 and S100  Specular Highlights Enabled for 30% and 100% of Scene

Aa20  Anti-Aliasing enabled for 20% of Scene

Z  Z-Buffer enabled. Cleared at beginning of Scene

T  256X256 MipMap BiLinear Filter, ARGB 0565 Format (unless otherwise stated)
Intel740™ Graphics Accelerator Software Developer’s Manual 4-5



Performance Considerations

uraud 
The graphs in Figure 4-5 show triangles per second, pixels per second, and duty cycle for Go
only, Gouraud with Z-Buffer and Gouraud with Z-Buffer and Textures.

Figure 4-5. Basic Feature Sweeps

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0 100 200 300 400 500

G GZ (50% Z) GZT (50% Z)

target range

Triangles/Sec

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

0 100 200 300 400 500

G GZ (50% Z) GZT (50% Z)

0

25

50

75

100

0 100 200 300 400 500

G GZ (50% Z) GZT (50% Z)

0

25

50

75

100

0 100 200 300 400 500

G GZ (50% Z) GZT (50% Z)

target range
Pixels/Sec

target range

D3D Driver Duty Cycle

target range

OpenGL Driver Duty Cycle

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)
4-6 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

feature 
g, 
The graphs in Figure 4-6 show triangles per second, pixels per second, and duty cycle. The 
sets start with the GZT features set from the last basic sweep and display the sensitivity to fo
alpha blending, specular, and anti-aliasing.

Figure 4-6. Advanced Feature Sweeps

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 100 200 300 400 500

GZT (50% Z) GFgZT (50% Z) GA20ZT (50% Z)
GA100ZT (50% Z) GS30ZT (50% Z) GS100ZT (50% Z)
GAa20ZT (50% Z)

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

0 100 200 300 400 500

GZT (50% Z) GFgZT (50% Z) GA20ZT (50% Z)
GA100ZT (50% Z) GS30ZT (50% Z) GS100ZT (50% Z)
GAa20ZT (50% Z)

0

25

50

75

100

0 100 200 300 400 500

GZT (50% Z) GFgZT (50% Z) GA20ZT (50% Z)
GA100ZT (50% Z) GS30ZT (50% Z) GS100ZT (50% Z)
GAa20ZT (50% Z)

0

25

50

75

100

0 100 200 300 400 500

GZT (50% Z) GFgZT (50% Z)
GA20ZT (50% Z) GA100ZT (50% Z)

target range

Triangles/Sec

target range
Pixels/Sec

target range

D3D Driver Duty Cycle

target range

OpenGL Driver Duty Cycle

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)
Intel740™ Graphics Accelerator Software Developer’s Manual 4-7



Performance Considerations

ull 
The graphs in Figure 4-7 show triangles per second, pixels per second, and duty cycle with f
feature sets.

Figure 4-7. Full Feature Sweeps

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 100 200 300 400 500

GZT (50% Z) GFgA20S30ZT (50% Z) GFgA100S100ZT (50% Z)

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

0 100 200 300 400 500

GZT (50% Z) GFgA20S30ZT (50% Z) GFgA100S100ZT (50% Z)

0

25

50

75

100

0 100 200 300 400 500

GZT (50% Z) GFgA20S30ZT (50% Z) GFgA100S100ZT (50% Z)

0

25

50

75

100

0 100 200 300 400 500

GZT (50% Z) GFgA20ZT (50% Z) GFgA100ZT (50% Z)

target range

OpenGL Driver Duty Cycle

target range

D3D Driver Duty Cycle

target range

Pixels/Sec

target range

Triangles/Sec

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)
4-8 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

ual 
n code 
hieved.

int of 
rator, 
of the 

or blit 
me 

 
 the 
vious 
her 
 

es 

e rate 
 the 

s fill 
ance. 

rator 
4.1.3.2 Implications and Analysis

This section suggests how the reported results can be translated into performance for individ
applications. The tests are raster speed only. Because of system concurrency, if the applicatio
executed between scenes preserves the duty cycle, the stated triangle and fill rates will be ac

Average and percent Z are a good measure of scene complexity from the graphics card’s po
view. They actually define the number of pixels that will be processed by the graphics accele
per scene. Pixels per scene and desired frames per second give the fill rate that is required 
graphics accelerator to hit that frame rate.

Pixels_per_Scene = (Screen.W * Screen.H * Avg_DC_Goal / Percent_Z_Goal)

Required_Fill_Rate = Pixels_per_Scene / (1/Frames_per_Second - Tover_head)

Tover_head is the overhead time which may be required to clear the Z-buffer, render buffers, 
a background. The number and size of triangles per scene may be more convenient for a ga
designer to work with, but it is not a difficult conversion between the two.

Avg_DC_Goal = Triangles_per_Scene * Pix_per_Tri * Percent_Z_Goal / (Screen.W * Screen.H)

The %Z goal indicates how well the triangles are ordered before being sent to the Intel740™
graphics accelerator graphics accelerator. 50% Z assumes that half of the pixels contained in
processed triangles will actually not be written to the screen because they are behind the pre
pixel in the z-order. Note that for a constant number of pixels per scene, if %Z goes up (a hig
number of Z-values are written) then the DC also goes up. Even though the pixels per scene
remains the same, the fill rate will change because it is a function of %Z.

A scene complexity of 2.5 DC and 50% Z was chosen because it is predicted that typical gam
will have a similar complexity. However, not all games will follow this pattern.

Depth complexity is a measure of pixels per scene. Increasing DC does not affect the triangl
or the actual fill rate, but will affect the pixels per scene and the required fill rate according to
equations mentioned above.

Percent Z occlusion does affect the triangle and fill rates. Basically, decreasing %Z increase
rate, and vice versa. Sorting triangles from front to back produces higher graphic card perform
Implementing a sorting algorithm is only recommended when the Intel740™ graphics accele
fill rate becomes the system performance bottleneck. The following graph illustrates the 
performance with changing scene %Z occlusion.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-9



Performance Considerations

size at 
fill 
ngles of 
30ZT, 
e scene 
cond.

ent, 
 

he 

sted for 
e 

. For 
 

Very few games will have just one triangle size per scene, but it is useful to analyze just one 
a time because it supplies many of the building blocks required to approximate triangle rate, 
rate, and duty cycle for more complex scenes. This example uses a game scene of 7,000 tria
75 pixels and 3,000 triangles of 175 pixels, has a 50% Z, uses a full feature set of GFgA20S
has a Tover_head of about 1 ms, and requires 30 frames per second. The average DC for th
comes to 1.71, the pixels per scene is 1.05M, and it requires a fill rate of 32.5M pixels per se

Avg_DC_Goal = (75 * 7,000 + 175 * 3,000) * .5 / (640 * 480) = 1.71

Required_Fill_Rate = 1.05M / (1/30 - .001) = 32.5M

The fill rate for this type of scene is not explicitly quoted in the graphs included in this docum
but a weighted average based on numbers of pixels can be used to extrapolate the Intel740™
graphics accelerator resultant fill rate. For the previous example, the extrapolated fill rate of t
Intel740™ graphics accelerator is 35.2M pixels/s.

Pixels_per_Second (estimate) = ( 525k * 30.4M + 525k * 40.0M ) / 1.2M = 35.2M Pix/s

RasM can be used to test scenes with non-constant triangle sizes. When the hardware was te
this case, the actual fill rate was reported to be 34.2M pixels/s. Most of the discrepancy can b
attributed to the scene depth complexity in this example being below that of the quoted tests
more information on how DC (or total packet size) can affect performance, see Table 4.1.4.3
“Triangle Packet Size” on page 4-13.

Figure 4-8. Performance vs. Percent Z Occlusion

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 100 200 300 400 500

ZBuffer On (Write Never) ZBuffer On (10% Z) ZBuffer On (25% Z)
ZBuffer On (50% Z) ZBuffer On (70% Z) ZBuffer On (Write Alw ays)

target range

Pixels Per Triangle

Pixels Per Second
4-10 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

erable 

 

f 
ize are 
res, 

 and 
4.1.4 Special Performance Considerations

This section contains descriptions of subtle application design choices which can have consid
effects on performance.

4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers

Direct3D immediate mode allows programmers to choose between execute buffers and draw
primitive methods of sending commands to the graphics hardware. The Intel740™ graphics 
accelerator performance and CPU driver duty cycle are both nearly identical for either sets o
methods. This is the case as long as other considerations such as concurrency and packet s
not ignored. The following full feature sweeps (Fog, 20% Alpha, 30% Specular, MipMap Textu
2.5 DC, 50% Z) use execute buffers, draw indexed primitive, draw primitive with triangle lists,
draw primitive with discrete triangles. Each of the instructions sending groups of triangles 
(includes all but draw primitive with discrete triangles) issues 500 triangles per instruction.

Figure 4-9. Performance of DrawPrimitive vs. Execute Buffer

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

ExecBuff DrawIndexedPrim
DrawPrim TRI_LIST DrawPrim Single Tris

0.00E+00
1.00E+01

2.00E+01
3.00E+01
4.00E+01
5.00E+01
6.00E+01
7.00E+01
8.00E+01
9.00E+01
1.00E+02

0 50 100 150 200 250 300 350 400 450 500

ExecBuff DrawIndexedPrim DrawPrim TRI_LIST DrawPrim Single Tris

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Second

Duty CycleD3D Driver
Intel740™ Graphics Accelerator Software Developer’s Manual 4-11



Performance Considerations

y draw 
a 
angles 

on 
 more 
e” on 

fers 
nd 

of the 

e 
y 500 
Each method has an associated CPU overhead. Execute buffers have the lowest, followed b
primitive with triangle lists. Sending a single triangle with each draw primitive command has 
very high overhead; below about 200 pixels per triangle the CPU is unable to send enough tri
down per second to keep the Intel740™ graphics accelerator busy.

It is important to note that execute buffers tend to force applications to group triangle executi
commands, which is advantageous for the Intel740™ graphics accelerator and its driver. For
information on Performance vs. triangle packet size see Section 4.1.4.3, “Triangle Packet Siz
page 4-13.

4.1.4.2 OpenGL Display Lists vs. Vertex Buffers

OpenGL give programmers the choice of several rendering methods: display lists, vertex buf
(using glDrawArray, glArrayElements, and glDrawElements), or simply specifying polygons a
vertices on the fly. Vertex buffers are generally considered the highest performance method. 
Among the vertex buffer methods, glDrawArray and glArrayElement are the recommended 
methods for programming to the Intel740 graphic accelerator. Unless otherwise specified, all 
OpenGL driver duty cycle numbers in this manual use vertex arrays with glDrawArray.

The following full feature sweeps (Fog, 20% Alpha, MipMap Textures, 2.5 DC, 50% Z) use th
various polygon rendering methods. The vertex buffer instructions use buffer of approximatel
triangles.

Figure 4-10. Performance of Display Lists vs. Vertex Buffers

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

0 100 200 300 400 500

GFgA20ZT (50% Z) - DisplayLists GFgA20ZT (50% Z) - Draw Arrays
GFgA20ZT (50% Z) - ArrayElements GFgA20ZT (50% Z) - Draw Elements
GFgA20ZT (50% Z) - OnTheFly

0

20

40

60

80

100

0 100 200 300 400 500

GFgA20ZT (50% Z) - DisplayLists GFgA20ZT (50% Z) - Draw Arrays
GFgA20ZT (50% Z) - ArrayElements GFgA20ZT (50% Z) - Draw Elements
GFgA20ZT (50% Z) - OnTheFly

target range Pixels/Sec

target range

OpenGL Driver Duty Cycle

Triangle Size (Pixels/Triangle)

Triangle Size (Pixels/Triangle)
4-12 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

 a 
ore 

lerator 
ing a 
ackets, 
le and 
f 
 

etween 
uffer/

e 
 20% 
e. The 
CPU 
Each method has an associated CPU overhead. Vertex arrays with glDrawArray and 
glDrawElements have the lowest overhead. Sending triangle strips or fans either on the fly, in
display list, or vertex array is also an efficient method of batching primitives. In general, the m
triangles batched in a single call, the lower the overhead.

4.1.4.3 Triangle Packet Size

Software designers should try to bunch triangle packets sent to the Intel740™ graphics acce
driver. Because of the overhead associated with starting the flow of command packets, send
small number of triangles in a packet decreases performance. By sending out large triangle p
the overhead is amortized over the rasterization time of all triangles. As a result, higher triang
fill rates are achieved. Grouping rastered triangles is also critical to maintaining a high level o
CPU/Intel740™ graphics accelerator concurrency. For more information on concurrency, see
Section 4.1.2, “Using CPU/Intel740™ Graphics Accelerator Concurrency” on page 4-2.

This section addresses both performance vs. execute buffer/draw primitive buffer size, and 
performance vs. total packet size. The total packet size is the total number of triangles sent b
breaks caused by game controls, lighting, or other CPU tasks. It consists of all the execute b
draw primitive buffers sent down one right after the other.

The following graphs illustrate the performance vs. execute buffer size, draw indexed primitiv
triangle list size, and draw primitive list size. All of these sweeps are full feature sweeps (Fog,
Alpha, 30% Specular, MipMap Textures) and have a constant 10,000 triangle total packet siz
Intel740™ graphics accelerator fill rate is not affected; the following graphs show duty cycle (
overhead).

Figure 4-11. D3D Performance vs. Buffer Size (Duty Cycle)

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

Ex ec Buf f  500 Ex ec Buf f  100 Ex ec Buf f  20 Ex ec Buf f  4 Ex ec Buf f  2

0 .00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

Draw Index edPrim 500 Draw Index edPrim 100 Draw Index edPrim 20
Draw Index edPrim 4 Draw Index edPrim 2

0 .00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

Draw Pr im TRI_L IST 500 Draw Pr im TRI_L IST 100 Draw Pr im TRI_L IST 20
Draw Pr im TRI_L IST 4 Draw Pr im TRI_L IST 2

target range

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Triangle

Duty Cycle

Duty Cycle

Duty Cycle

D3D Driver

D3D Driver

D3D Driver
Intel740™ Graphics Accelerator Software Developer’s Manual 4-13



Performance Considerations

hics 
iangles 

 need 
l to 
trates 

ll 
tes in 
Optimal D3D execute-buffer size on a Pentium® II processor system with an Intel740™ grap
accelerator has been determined to be 512 triangles. Keeping a buffer size above about 50 tr
may be considerably easier to implement and will only cost a few percent performance 
degradation.

The second and equally important concern is performance vs. total packet size. Applications
to have a minimum of about 2,000 triangles per packet (which if organized efficiently is equa
triangles per scene) to achieve near maximum system performance. The following graph illus
how sending small numbers of triangles in a packet can drastically reduce performance. An 
example of how this can happen is an application with a render loop which sends many sma
triangle packets divided up by game controls. Note that the following curves have 100% Z wri
order to keep the %Z constant with changing triangle packet size.

Figure 4-12. OpenGL Performance vs. Buffer Size (Duty Cycle)

0

25

50

75

100

0 100 200 300 400 500

Draw Array 500 Draw Array 100 Draw Array 20
Draw Array 4 Draw Array 2 

Triangle Size (Pixels/Triangle)

target range OpenGL Driver Duty Cycle

0

25

50

75

100

0 100 200 300 400 500

DrawElements 500 DrawElements 100 DrawElements 20
DrawElements 4 DrawElements 2 

OpenGL Driver Duty Cycletarget range

Figure 4-13. Performance vs. Total Packet Size

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

0 50 100 150 200 250 300 350 400 450 500

GFgA20S30ZT (10k Tri) GFgA20S30ZT (2k Tri) GFgA20S30ZT (400 Tri)
GFgA20S30ZT (80 Tri) GFgA20S30ZT (16 Tri)

target range

Pixels Per Triangle

Pixels Per Second
4-14 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

pact. 

e can 
d 
hich 

ize 

ably 
pped 
that 
x512 
elect 

d with 
e 
r 
4.1.4.4 Texture Sizes

The ratio of texture-mapped area to triangle area can have a very significant performance im
Mapping large non-mipmapped textures onto small triangles forces the Intel740™ graphics 
accelerator to scan through much of the texture for just a few texels. When a textured triangl
be viewed up close as well as far away, mipmapping is an excellent choice. Using mipmappe
textures, in addition to looking better, alleviates this problem by selecting a texture map size w
is close to the textured triangle size.

The following graph demonstrates how performance can be degraded by texture to triangle s
mismatches.

A 32x32 bitmap maps directly onto a 512 pixel triangle. Notice that this size bitmap consider
degrades performance of triangles smaller than about 300 pixels (about half of the direct ma
triangle size). In general, the bitmap area being mapped onto a triangle should be no larger 
twice the triangle area in order to maintain high performance. The mipmapped textures (512
and 128x128) achieve high performance by allowing the Intel740™ graphics accelerator to s
the texture size.

4.1.4.5 Palette Changes

The Intel740™ graphics accelerator is optimized for 16-bit textures. It is recommended that 
applications use 16-bit textures over 8-bit palettized textures. Palettized textures are supporte
a relatively low overhead. The following graph reports the performance of a full-featured scen
(Fog, 20% Alpha, 30% Specular, 2.5 DC, 50% Z) with a varied number of palette changes pe
scene.

Figure 4-14. Performance vs. Texture Size

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 100 200 300 400 500

MipMap (512x512 to 1x1) MipMap (128x128 to 1x1)
BitMap (512x512) BitMap (128x128)
BitMap (32x32) BitMap (8x8)

target range

Pixels Per Triangle

Pixels Per Second
Intel740™ Graphics Accelerator Software Developer’s Manual 4-15



Performance Considerations

ed 
rade 

ating 
ntiled 

a 
Application developers can use these graphs as an indicator of when to sort palettized textur
triangles by texture handle. If an application is CPU limited, sorting by texture handle will deg
performance in most cases.

4.1.4.6 Untiled Textures for Procedural Texture Animation

Directly modifying texture surfaces in AGP memory can be used as a powerful method for cre
many types of stunning effects. This section describes the performance implication of using u
textures. For more information on how to create effects with procedural animation and on 
Intel740™ graphics accelerator tiling, see Section 4.2.1.4, “Animated Texture Effects” on 
page 4-22. Note that untiled surfaces can only be created with D3D. OpenGL does not have 
mechanism for requesting this type of surface.

Triangles which use untiled textures will be processed with some performance degradation. 
Figure 4-16 illustrates the performance difference between triangles using tiled and untiled 
textures.

Figure 4-15. Performance vs. Palette Changes

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

25 Pal Changes 100 Pal Changes
400 Pal Changes 1600 Pal Changes

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

25 Pal Changes 100 Pal Changes
400 Pal Changes 1600 Pal Changes

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Second

Duty Cycle
4-16 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

triangle 

e to 
 For 

ding. 
lpha 

 Z.
Untiled textures can degrade performance when large texture maps are used or when large 
to texture map size mismatches are present. Note that in the case of mipmaps, only a small 
performance degradation is seen for both 512x512 and 128x128. This is because the triangl
texture size mismatch is minimized, so only the degradation with large texture maps is seen.
more information on performance of triangle to texture size mismatch, see Section 4.1.4.4, 
“Texture Sizes” on page 4-15.

4.1.4.7 High Performance Transparency

Methods of implementing transparency include: chroma keying, alpha testing, and alpha blen
If performance is the primary concern, chroma keying or alpha testing should be used over a
blending. The Intel740™ graphics accelerator implements both without any performance 
degradation. When translucency is desired, alpha blending is supported with only a minor 
performance decrease.

The following graph illustrates the performance of chroma keying, alpha testing, and alpha 
blending. The sweeps use a feature set of Gouraud, Mipmapped Textures, 2.5 DC, and 50%

Figure 4-16. Performance with Untiled Textures

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 1000 2000 3000 4000 5000

BitMap (128x128) BitMap (32x32)
BitMap (No Tile, 128x128) BitMap (No Tile, 32x32)

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 1000 2000 3000 4000 5000

MipMap (512x512 to 1x1) MipMap (128x128 to 1x1)
MipMap (No Tile, 512x512 to 1x1) MipMap (No Tile, 128x128 to 1x1)

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Second

Pixels Per Second
Intel740™ Graphics Accelerator Software Developer’s Manual 4-17



Performance Considerations

he 
re 

 run 
cal 

hich 

 

4.1.4.8 Screen Resolutions

The Intel740™ graphics accelerator 3D performance is optimized for 640x480 and it is 
recommended that applications target 3D graphic intensive applications for this resolution. T
following graph illustrates performance scaling for greater resolutions. The tests are full-featu
sweeps (Fog, 20% Alpha, 30% Specular, Mipmapped Textures, 2.5 DC, 50% Z). This test is
with 8 Mbytes of video memory to enable 1280x1024 to fit both the render and Z-Buffer in lo
video.

Note that 1280x1024 mode is actually faster than 1024x768 mode because it is interlaced, w
does not require as much local memory bandwidth.

4.1.5 Budgeting CPU Clock Cycles

For an application to achieve a sustainable high frame rate, the CPU must calculate lighting,
geometry, and game controls, and send the triangle information to the Intel740™ graphics 
accelerator — all within each frame period. Budgeting CPU clock cycles to fit within the 
Intel740™ graphics accelerator duty cycle is imperative to this task.

Figure 4-17. Performance vs. Transparency

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

None Chroma Key Alpha Test Alpha Blend

target range

Pixels Per Triangle

Pixels Per Second

Figure 4-18. Performance vs. Screen Resolution

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

Full (640x480) Full (800x600) Full (1024x768) Full (1280x1024)

target range

Pixels Per Triangle

Pixels Per Second
4-18 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

rget 
a 
pate 
rator 

 video 
splay 
For the Intel740™ graphics accelerator, it is suggested that developers of 3D applications ta
10,000 triangles per frame at 30 frames per second. The numbers listed in Figure 4-3 show 
conservative analysis of the needed CPU clock cycles and assumptions. The user can antici
good overall performance when implementing full features of the Intel740™ graphics accele
and using these targets.

Assumptions:

• Intel740™ graphics accelerator state and operand(s) change overhead not considered

• No Page-Miss on Execute Buffer Reads

• No FP to MMX™ instruction alignment cycles considered

• Theoretical full bandwidth of memory bus available

• Definition of 24 DWords/triangle (96 bytes)

4.1.6 Video Performance

Table 4-4 shows the video/data rates for some typical applications. The highest data rate for
capture is in application of video conferencing on a 200 kbps ISDN line. The highest video di
data rate is 20 Mbyte/s in DVD/MPEG-2 playback applications. 

Table 4-3. CPU Cycle Targets

Function Description Notes

Frames per Sec 30

CPU Speed 233 MHz

CPU Clocks/Triangle 200

Triangles/Sec 300,000 Triangles/Frame *   Frames/Second

Triangles/Frame 10,000

CPU Clocks/Frame 2,000,000 Triangles/Second * CPU Clocks/Triangle

Figure 4-19. Available Memory Bandwidth on a Pentium ® II  Processor System

C P U

Frame Buffer

AGP Video Memor y
(AGP Aperture)

Sy stem Memor y

WC WR

(upto 180  MB/s) WC/MMX RD

(upto 24 MB/s)

WC WR

(370 MB/s)
WC/MMX RD

(62 MB/s)

Cacheable RD/WR
(370 MB/s)

DMA
AGP Master

(300 MB/s)HW BLT
(300 MB/s)

Platform:

Pen t ium ® II  Processor /
Intel ® 440LX AGPset

Memor y  Access Chart
Intel740™ Graphics Accelerator Software Developer’s Manual 4-19



Performance Considerations

e 
f 
 the 
ctor 

eful 
Table 4-5 shows the CPU usage for those applications, which can be calculated based on th
memory bandwidth. Note that most applications will benefit from the higher read bandwidth o
AGP aperture, if the video or VBI data can be routed through the AGP aperture. In this case,
CPU usage for data capturing will be under 5%, making the capture I/O a less degradation fa
for the applications. Similarly, the high CPU write bandwidth of AGP aperture can also be us
for DVD/MPEG-2 playback applications.

Table 4-4. Typical Video/Data Capture Applications

Application  Format Frame Rate 
(fps)

Resolution 
hor*vert*pixdep 

Frame Size 
(bytes) 

Bandwidth 
(Mbytes/s)

Intercast (VBI) Raw Data 30 800 x 22 x 2 35,200 1.0

POTS Video Conf Sub-QCIF 15 128 x 96 x 2 24,576 0.37

POTS VC QCIF 12 176 x 144 x 2 50,688 0.6

ISDN VC (128kbps) CIF 12 352 x 288 x 2 202,752 2.4

ISDN VC (200kbps) CIF 15 352 x 288 x 2 202,752 3.0

DVD/MPEG-2 DCIF 30 720 x 480 x 2 691,200 20

Table 4-5. CPU Usage for Some Typical Applications

Video/Data Stream CPU Usage (%)

Format Frame 
Rate

BW 
(Mbytes/s)

FB Read (BW=
24Mbytes/s)

AGP Read (BW=
62Mbytes/s)

FB Write (BW=
180Mbytes/s)

AGP Write (BW=
360Mbytes/s)

VBI     30fps 1.0 4.2% 1.6%

SQCIF 15 .37 1.5% 0.6%

QCIF 12 0.6 2.5% 1.0%

CIF 12 2.4 10% 3.9%

CIF 15 3.0 13% 4.8%

DCIF 30 20 11% 5.6%
4-20 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

ger 
 can 
are 

es 
nd it 
f the 

ng 
 

its 
at 

s the 
een 

 

 a 

 small 
des 
se 
es as 
 in 

rease 
with 

ed 
e 

me!
4.2 Other Programming Tips

4.2.1 Texture and Surface Effects

Several aspects of texture usage are discussed in this section including:

• “Texture Formats” on page 4-21

• “Texture Sizes” on page 4-22

• “Texture Storage” on page 4-22

• “Animated Texture Effects” on page 4-22

• “Multi-pass Texture Effects” on page 4-23

4.2.1.1 Texture Formats

Because AGP allows high bandwidth for texture execution, and virtually unlimited storage 
potential (based on the amount of system RAM available) the application developer is no lon
limited to small 8-bit palettized textures. There is a whole new world of texture formats which
be experimented with to increase the look and feel of the application. These texture formats 
discussed below:

16-bit RGB(A) Using 16-bit RGB(A) textures is highly recommended because it fre
the application from dependence upon the single hardware palette a
allows for a wider span of colors in each texture. Frequent changes o
hardware palette can put a slight strain on the overall performance.

8-bit YUV & 
16-bit AYUV Using YUV textures may provide the user with a new look. When usi

8-bit YUV 4:2:2 texture format, storage space is minimized. Also the
textures can be input as 16-bit YUV(A) with more colors and more 
intensities of color as well as alpha. An advantage of YUV is that 8 b
can be represented without the overhead of a palette. YUV is a form
that favors the human eye’s sensitivity to color because it compresse
chrominance and luminance of a color rather than a degradation betw
colors. Usually the outcome is a picture which has kept its detail but
which is slightly different in color values than the original. Like 
RGB(A), YUV(A) allows for a much larger range of colors than does
palette.

1, 2, 4, & 8 bit palettized Sometimes it is good to use a palette for a texture because only a
amount of colors are employed. For instance, if the sky is mainly sha
of blue mixed with white, a 4-bit palette could work very well. Becau
the palette is kept in the hardware, it is not as easy to animate palett
it is in software. Every time the palette is changed, there is a change
state which causes a performance decrease. This performance dec
is estimated at about 1% if there are 30 palette changes in a frame 
10,000 triangles with full features on.

Live Video Capture Live Video Capture can be used for a surface texture when combin
with 2D Chroma Keying. It might make an astonishing effect if a gam
incorporated live input of the game player as they are playing the ga
Intel740™ Graphics Accelerator Software Developer’s Manual 4-21



Performance Considerations

1 and 
as take 

ance 
ut 

e it 
l 
/s 

ich 
less 
. It is 

ith 
s it is 

:

ates 
tion 
 
n.

e 
t 
 that 
or 

er 
r 

or 

 
ing 
uld 

ure 
llow 

ing 

en 
s in 

 to 
d 
4.2.1.2 Texture Sizes

The Intel740™ graphics accelerator supports texture sizes ranging from 1024 x 1024 to 1 x 
any power of two-sided rectangle in between. It is recommended that a few large surface are
advantage of the large map sizes to show-off this ability where it counts, such as when a 
background landscape is shown, or to get high resolution detail of a painting. It is best to bal
the usage of large and small texture maps to object surfaces that can best utilize them witho
taking up memory resources when it is not necessary to have that large of a texture.

4.2.1.3 Texture Storage

The Intel740™ graphics accelerator is optimized for texture storage in AGP memory becaus
allows simultaneous throughput of up to 533 Mbyte/s of textures with the 800 Mbyte/s of loca
video memory which may contain the display, render and Z-buffer. This equates to 1.3 Gbyte
total throughput. This is a great advantage over non-AGP graphics accelerator hardware wh
must keep all the textures in local video memory equating to significantly fewer textures and 
local video memory bus bandwidth because it has to share with display, frame and Z-buffers
not possible to store textures in local video memory on the Intel740™ graphics accelerator. W
DirectX it is as easy to allocate a texture in AGP memory (also known as non-local memory) a
in local video memory. For OpenGL programmers, the Intel740 drivers automatically place 
textures into AGP memory when a texture is loaded in the application.

4.2.1.4 Animated Texture Effects

There are many strategies which can be used in animating textures. Each is described below

UV Coordinates One way to animate a texture is to change the texture U, V coordin
as they map on to the vertices for each frame. This method of anima
is extremely fast since it does not cause any change of state for the
hardware and therefore does not cause any performance degradatio

Texture Frames Several frames can be loaded into AGP for one object and then th
object’s texture pointer can be changed to cycle through the differen
textures and give the effect of the textures changing. The drawback is
extra storage space is needed although with more space available f
texture storage due to AGP, storing more textures is not a problem.

Specular Lighting By changing the specular highlighting values along each vertex ov
time, a change in lighting patterns over an object to simulate water o
flickering lights can be produced. The Intel740™ graphics accelerat
also allows the Specular Color value to be any R.G.B. color, which 
means that the colors could be animated to get different effects.

Fogging As with Specular Highlight animation, Fogging values can be varied
over time to produce new and unusual effects such as a whale jump
out of the water and the fog comes off of its body as it hits air and co
be replaced with more shininess (specular highlights).

Alpha Blending By changing the blending factors over time for each frame, the text
can appear more opaque or more translucent over time. This could a
for an effect such as a figure starting out as a ghost object and becom
more visible over time.

Procedural Textures A procedural texture is one where texel values are changed betwe
renders by a mathematical formula to produce such effects as ripple
water. When creating the texture surface in DirectX, the user needs
specify the DDSCAPS_3DDEVICE so that the surface will not be tile
4-22 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

by 
can 
 a 
PU 

es 

n 
ach 
the 

ch 
re 

 a 2x 

ht 
s, the 
 the 

thus 

en the 
e of 
t. In 
e 

res of 
if using AGP non local video memory. The texture can be written on 
locking the texture surface and getting a pointer to it. Then the user 
traverse the texture memory space and apply their changes. This is
great way to represent fire or water in a texture and utilizes the extra C
cycles while scene rendering is being done by the hardware. Textur
should be stored in AGP memory to take advantage of the Direct 
Memory Execution (DME) abilities of the Intel740™ graphics 
accelerator. For OpenGL programmers, there is no way to specify 
“3DDEVICE” which means there will be a performance penalty whe
using procedural textures because the Intel740 drivers will tile them e
time they are loaded. Also with OpenGL, there is no way to access 
texture memory through the API so the image data will need to be 
updated from its source and then reloaded through the API after ea
change of the texture for each frame that is dependent on that textu
surface.

4.2.1.5 Multi-pass Texture Effects

There are a few more texture effects worth mentioning that can be obtained with multi-pass 
algorithms. Multi-pass means that the scene is rendered twice for each frame, hence causes
slower performance. The different effects are listed below:

Z-Buffer Shadowing First the camera must view the scene from the point of view of a lig
source. The scene is rendered using Z-buffering. On the second pas
scene is rendered from the real point of view of the camera, and then
old Z-buffer values are read with a color altering algorithm which is 
applied to the pixel values being rendered at the same x, y location, 
creating a shadow. 

Dual Texture Rendering The first scene is rendered with textures in their correct places, th
second scene is rendered with a common pattern (possibly using on
the animated texture techniques) such as a translucent lighting effec
this way underwater rocks, plants, and animals could all appear to b
affected by the same light patterns. 

4.2.2 Software Strategies

This section describes how to optimize applications which take advantage of the many featu
the Intel740™ graphics accelerator. Topics of discussion include:

• Using Z-Buffering

• Using Triple-Buffering

• Using Antialiasing

• Minimizing State Transitions

• Using Dynamic AGP Buffer Placement

• Using Texture Palettes

• Using Mipmapping

• Optimal Artist Geometry Design

• Optimal Artist Texture Design for Trilinear Filtering

• Using Color/Chroma keying on Top of Alpha Blended Textures

• Avoiding Stippling Errors

• Avoiding Flipping Errors

• Texture Sorting is Not Required
Intel740™ Graphics Accelerator Software Developer’s Manual 4-23



Performance Considerations

 
s they 

 from 
s will 
y 
it. It 
ding 

 

cene 

nd 
ge.

 
e a 
er 
ip” 
h 
ut of 
e 

o 
 causes 
ing be 
g and 
r 

 

d 
ere is 

 time a 
anges 

r the 
™ 

ippling 
4.2.2.1 Using Z-Buffering

The Intel740™ graphics accelerator performs all of an application’s 3D depth compare in the
hardware. This means that the hardware will correctly write all of the triangles in the scene a
overlap, without the need for breaking them up into smaller triangles or expensive sorting 
algorithms. What the programmer must remember is that if the polygons (triangles) are sorted
back to front in the application and then sent to the hardware with the Z-buffering enabled, thi
give worse case results because the hardware Z-buffer algorithm checks each pixel in an x, 
position against the last, and if it is in front of the last according to its z value, it will write over 
is best not to sort at all if the Z-buffer is enabled. However, enabling anti-aliasing or alpha blen
requires that the triangles be sorted from back to front. In this case Z-buffering may cause a
performance hit which becomes a trade-off for rendering any intersecting triangles properly. 

The Intel740™ graphics accelerator supports a 16-bit Z-buffer. Sometimes an application’s s
depth complexity will cause rounding of the z bits resulting in unwanted tears along some 
polygons. To alleviate this problem the user could disable Z-buffering for background items a
render them first. Another solution is to make the scene’s z coordinates fit within a 16-bit ran

4.2.2.2 Using Triple-Buffering

It is highly recommended to implement triple-buffering for fullscreen applications. There are a
couple of reasons to implement triple-buffering. First, many fullscreen applications experienc
stall while the driver waits for the vsynch signal so it can flip from the back to the primary buff
for each frame of the application. In such instances, triple-buffering will minize the “wait for fl
stall because the application can draw to a second back buffer which will not have the vsync
dependency associated with it. Also, because the Intel740™ graphics accelerator textures o
AGP memory, the local video memory does not have to be shared and so more buffers can b
created in local video memory without any loss of texturing capability.

4.2.2.3 Using Antialiasing

It is very easy to implement anti-aliasing. Simply enable it. Sort the polygons/triangles back t
front, and render the scene. The user should be cautioned to use anti-aliasing sparingly as it
a performance slow down. The user should also note that anti-aliasing requires that Z-buffer
enabled and that a Z function is defined. One strategy for rendering a scene with anti-aliasin
Z-buffering acceleration would be to render the background separately without anti-aliasing o
Z-buffering enabled, then sort back to front the forefront items, enable both anti-aliasing and
Z-buffering and then render the rest of the scene.

4.2.2.4 Minimizing State Transitions

It is encouraged that as much of the features of the Intel740™ graphics accelerator be utilize
during the execution of a 3D program as is needed to achieve the maximum visual effect. Th
little overhead for enabling all of the Intel740™ graphics accelerator 3D features with the 
exception of alpha blending and anti-aliasing which should only be enabled as needed. Each
feature is enabled or disabled, a state change must take place within the hardware. State ch
cause a slight decrease in overall bandwidth and so causes a slight performance hit. Best 
performance will be ensured if triangles to be rendered are ordered according to their state o
set of features they have enabled. For the most part, state changes do not affect the Intel740
graphics accelerator. The only state changes which cause a pipeline flush are palette and st
changes. 
4-24 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

ers 

r, 
nged 
40™ 

buffer 

 many 
 
only 
ws 
 of a 

to use 

 it has 
n be 8 
 of the 
of 
 

4.2.2.5 Dynamic AGP Buffer Placement

The Intel740™ graphics accelerator supports dynamic AGP Buffer Placement. Alternate buff
can be relocated from local video memory into AGP memory when necessary to allow full 
functionality. When there is 2 Mbytes of local video memory, at 640 x 480 x 16 the front buffe
back buffer and Z-buffer can all be placed in local video memory. When the resolution is cha
to 800 x 600 x 16 or higher, then the back buffer can be relocated to AGP memory. The Intel7
graphics accelerator supports rendering to the back buffer in AGP memory. Putting the back 
into AGP memory can free up local video memory for MPEG Overlay as well. 

4.2.2.6 Using  Texture Palettes

It is best not to use palettized textures, because the Intel740™ graphics accelerator supports
formats of ARGB, YUV and AYUV, which allows more colors without the overhead of palette
loads and changes. To use palettized textures, minimize changes in palettes. The hardware 
supports one palette and to change it requires a state change and a pipeline flush, which slo
overall performance. There are ways to combine many texture palettes into one, with the use
tool such as Debabelizer* which can find a common palette among many textures. It is best 
texture formats that require no palette at all. 

4.2.2.7 Using Mipmapping

An application not only increases visual quality but can also increase performance of the 
application by using mipmapped textures. When an object becomes very small or distant and
a large texture map associated with it, the ratio of texel look-up to texels used in rendering ca
to 1 because the Intel740™ graphics accelerator drivers are acquiring 16 bytes from a section
texture map but only 2 bytes are actually being rendered. Mipmapping will give a 1 to 1 ratio 
texture texels read from an image to those texels rendered in the scene. Mipmapping usually
improves overall application performance by at least 10%.

Figure 4-20. Dynamic AGP Buffer Placement

Fron t
Buf fer

B a c k
Buf fer

Z-Buf fer

Textures

A G P
M e m o r y

In te l740™ Graphics
Accelerator

Intel® 440LX
AGPset

Pent ium ®  I I
Processor

Mpeg  Over lay
0 . 6 m b0 . 0 4 G B

Back  Buf fe r
Intel740™ Graphics Accelerator Software Developer’s Manual 4-25



Performance Considerations

 to 
n how 
 an 

aller 
ap so 

 

en a 
when 

 
value 
d to as 
re 
same 
ce 
here 
 done 

p 
 When 
aller 

adds 
 to 
yed 
s, 

o be as 

 are 
Use the 

ly. 
nd for 
B has 
Mipmapping provides better looking graphical representation of a scene by allowing the user
create various texture maps, which the hardware will choose to map onto the object based o
far the object is from the viewer. So if a scene has a patterned texture which is mapped onto
object, the user would want to create variations of that pattern which would get smaller and sm
to correspond with each mipmapping level. The user then sets a pointer to each level of mipm
that the hardware will choose the correct texture based on the distance from the viewer. The
Intel740™ graphics accelerator supports tri-linear mipmapping for added visual quality.

4.2.2.8 Optimal Artist Geometry Design

Improper geometry creation causes application anomalies but can be completely avoided wh
few good geometry creation techniques are implemented. One geometry problem is caused 
two objects are intersecting and when their individual vertices overlap or when two object’s 
vertices are very close together without connection. When the Z values for these overlapping
vertices are less than a 2^16 step from each other, both of the vertices will have the same Z 
due to rounding causing the hardware to choose either pixel to be drawn. The result is referre
“pixel popping”. One way to avoid pixel popping is to make sure that overlapping objects sha
vertices and edges at the point of intersection. The shared vertices need to be precisely the 
value in order for the solution to work. The second geometry problem is caused when a verti
forms a “T” side where three triangles come together and do not share a common vertice. W
the common vertice is not shared, “texture tearing” occurs due to precision pixel interpolation
in the hardware. The solution then, is to avoid creating geometry “T”s.

4.2.2.9 Optimal Artist Texture Design for Trilinear Filtering

Trilinear filtering with the Intel740™ graphics accelerator looks best when the texture mipma
levels are created using a “nearest” value algorithm rather than an averaged value algorithm.
the artist creates the texture levels, they can control the type of filtering used to create the sm
sizes with their texture creation tools. Trilinear filtering with the Intel740 graphics accelerator 
another level of filtering from the bilinear method so, in some instances, textures can appear
become blurred. Sometimes the artist may like the extra blending as in the case of chromake
trees and shrubs where the blended edges add a more natural appearance. In most instance
especially when text is placed in a texture such as on a roadway sign, the images will need t
sharp as possible so they can be understood from far away.

4.2.2.10 Using Color/chroma Keying on Top of Alpha Blended Textures

When using both alpha blending and chroma/colorkeying together in a rendered frame there
some renderstates which must be enabled to ensure that all textures are rendered properly. 
following DirectX render states: 
SetRenderState(D3DRENDERSTATE_ALPHATESTENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ALPHAFUNC, D3DCMP_NOTEQUAL);

SetRenderState(D3DRENDERSTATE_ALPHAREF, 0);

At the same time, chroma/color keying should also be enabled using the DirectX function, 
SetColorKey() and setting the dwColorSpaceLowValue and dwColorSpaceHighValue proper
Remember that for color keying, both values should be the same color palette index value, a
chroma keying, the both values should be the same value for high and low as to how the RG
been defined.
4-26 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

 

 
he 
d not 
ippling 
 

lls at 
ch as 

en 
will not 
 than 
 
xtures 
y times 

be 
 or 

cified 
e 

 
d to 

se 
f 

nce that 
o 

 

4.2.2.11 Avoiding Stippling Errors

Some developers have set D3DRENDERSTATE_STIPPLEENABLE to TRUE which sets the
default value of 0 to be set for all stippled patterns from 
D3DRENDERSTATE_STIPPLEPATTERN00 to D3DRENDERSTATE_STIPPLEPATTERN31.
The result of enabling stippling without setting any values will be a black screen since all of t
values are by default set to zero. If developers are not going to be using stippling, they shoul
use this render state at all. If they are going to use stippling, they should be sure to set the st
values for all the D3DRENDERSTATE_STIPPLEPATTERNXX. When stippling is not to be in use,
developers should make sure to set D3DRENDERSTATE_STIPPLEENABLE to FALSE.

4.2.2.12 Avoiding Flipping Errors

When using the DirectX API, it is important to always use the BeginScene and EndScene ca
the beginning and end of each frame to be written. These calls ensure that flipping errors su
blanking screens do not occur.

4.2.2.13 Texture Sorting Is Not Required

With the Intel740™ graphics accelerator, the user does not have to sort textures because ev
though changing the texture pointer is a state change, it does not cause a pipeline flush and 
noticeably slow down the rendering. The application would be much slower at sorting textures
the Intel740™ graphics accelerator would be at swapping handles. If texture sorting for static
geometry can be done once to affect many frames, it might be useful to do so. If palettized te
are used, a performance hit may result because each pixel written could change palettes man
when relying on hardware Z-buffering for sorting. Because hardware Z-buffering will always 
faster than software sorting algorithms, it is recommended that the user move toward RGBA
YUV textures, which will not have a performance impact.

4.3 OpenGL Programming Implementation

The Intel740™ graphics accelerator supports all OpenGL commands and parameters as spe
in The OpenGL Graphics System: A Specification. This requires the OpenGL implementation to b
divided between the CPU and the graphics subsystem, in varying degrees according to the 
operations involved and the functionality and performance of those system components. This
characteristic of OpenGL implementations is desirable because the application is not require
understand the division of labor (and its resultant performance).

In many instances, the performance of a software implementation cannot be tolerated becau
minimum frame rates cannot be attained. This document specifies which functions/features o
OpenGL V1.1 will be hardware-accelerated (vs. performed in software or require software 
rasterization) by the Intel740™ graphics accelerator OpenGL implementation. By using 
accelerated features and avoiding software rasterization, a developer can gain some assura
the application will run at a high level of performance. An application still needs to be tuned t
ensure the highest level of performance. That the Intel740™ graphics accelerator OpenGL 
implementation is “complete” and contains all the required functionality.

4.3.1 OpenGL Feature Classification

For the Intel740™ graphics accelerator OpenGL implementation, OpenGL “features” fall into
three categories:
Intel740™ Graphics Accelerator Software Developer’s Manual 4-27



Performance Considerations

t 
ied 

 (such 
d 

e 
re 
d are 

nce. 

ill be 
ion.
1. Features supported directly by graphics hardware (such as setup and most per-fragmen
operations). These features are implemented through hardware acceleration and are classif
by “HW Accelerated.”

2. Features not supported by graphics hardware which would require software rasterization
as stencil operations) are implemented through the generic OpenGL software emulation an
are classified by “SW Emulation.” These features should be used sparingly.

3. “CPU-supported” features (geometry, lighting, display lists, etc.) which, although not 
particularly accelerated by graphics hardware, are likely to provide a level of performanc
equal to (or greater) than similar functions performed in the application. These features a
implemented through a combination of hardware acceleration and software emulation an
classified by “HW/SW Hybrid” and their usage is not necessarily detrimental to performa

Note: The programmer must consider all the pertinent state variables in order to understand what w
hardware accelerated — a single mode might preclude acceleration of all primitive rasterizat
4-28 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations
4.3.2 Feature Overview

The following table lists (at a high level) the rating of the OpenGL features.

Table 4-6. Rating OpenGL Features  (Sheet 1 of 2)

Function Classification † Comments

Pixel Formats

    RGBA HW Accelerated

    Color Index SW Emulation

Vertex Specification

    Begin/End HW/SW Hybrid

    Vertex Array HW/SW Hybrid

Evaluator HW/SW Hybrid

Model-view Transform HW/SW Hybrid

Lighting HW/SW Hybrid

Texture Generation HW/SW Hybrid

Texture Transform HW/SW Hybrid

User Clip Planes HW/SW Hybrid

Projection Transform HW/SW Hybrid

View Volume Clipping HW/SW Hybrid

Perspective Divide HW/SW Hybrid

Viewport Transform HW/SW Hybrid

Current Raster Position HW/SW Hybrid

Pixel Operations SW Emulation

Point Rasterization

    Width HW/SW Hybrid

    Anti-aliasing SW Emulation

Line Rasterization

    Width HW Accelerated/SW 
Emulation HW Accelerated: Width = 1.0

    Smoothing HW Accelerated

    Stippling HW Accelerated/SW 
Emulation HW Accelerated: for trivial patterns

Polygon Rasterization

    Culling HW Accelerated

    Stippling HW Accelerated

    Smoothing HW Accelerated

    Fill Mode HW Accelerated

    Point Mode HW/SW Hybrid

    Line Mode HW Accelerated

    Depth Offset HW/SW Hybrid

Pixel Rectangles / Bitmaps HW Accelerated HW Accelerated: simple copy operations

†  See also Section 4.3.1.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-29



Performance Considerations
Texturing

    TexImage* HW/SW Hybrid

    CopyTex HW/SW Hybrid

    TexSubImage HW/SW Hybrid

    CopyTexSubImage HW/SW Hybrid

    Wrap HW Accelerated

    Bilinear Filtering HW Accelerated

    Trilinear Filtering SW Emulation

    Border SW Emulation

    Texture Objects HW/SW Hybrid

    Replace, Modulate, Decal Modes  HW Accelerated

    Blend Mode  SW Emulation

Fog

    Per-Vertex HW Accelerated

    Per-Pixel SW Emulation

Per-Fragment Operations

    Pixel Ownership SW Emulation when drawing to occluded front buffer 

    Scissor SW Emulation

    Alpha Test HW Accelerated

    Stencil SW Emulation

    Depth Buffer Test HW Accelerated

    Blending HW Accelerated Note: No destination alpha buffer with depth 
buffer

    Dithering HW Accelerated

    Logical Op SW Emulation except for trivial operations

Whole Frame Buffer Operations

    FRONT_AND_BACK HW/SW Hybrid driver must draw twice

    Stereo Buffers n/a Not supported

    Auxiliary Buffers n/a Not supported

    Buffer Masks HW Accelerated/SW 
Emulation SW Emulation: different R,G,B,A masks

    Clear HW Accelerated

    Accumulation Buffer HW/SW Hybrid
accumulation performed in software

    Read Pixels HW/SW Hybrid

    Copy Pixels HW Accelerated/SW 
Emulation HW Accelerated: simple copies

Selection HW/SW Hybrid

Feedback HW/SW Hybrid

State Requests HW/SW Hybrid

Table 4-6. Rating OpenGL Features  (Sheet 2 of 2)

Function Classification † Comments

†  See also Section 4.3.1.
4-30 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

ion 
e 

ents, 
ed 
ration.   

ith the 

scribe 

ons, 
 for 

nGL 

must 

are 
Note: The remainder of this chapter is structured as an “annotation” of the OpenGL V1.1 specificat
and specific extensions. Only performance notes will be discussed and included here, so on
probably needs to read this document alongside the OpenGL specification.

4.3.3 OpenGL Operation

The following sections describe the classification of OpenGL features. 

4.3.3.1 Begin/End Paradigm

There are no primitive (object) types excluded from hardware acceleration. Points, line segm
line segment loops, separated line segments, polygons, triangle strips, triangle fans, separat
triangles, quadrilateral strips, and separated triangles are all candidates for hardware accele
This includes the specification of polygon edge flags.

4.3.3.2 Vertex Specification

All vertex and associated auxiliary data specifications are included in the performance set, w
following exceptions:

Since color index mode is not supported. Index specification is not of particular interest

4.3.3.3 Vertex Arrays

Vertex array specification is included in the performance set, and is the preferred means to de
objects with a large number of vertices.

4.3.3.4 Rectangles

Rectangles are included in the performance set.

4.3.3.5 Coordinate Transformation

The Intel740™ graphics accelerator does not provide hardware acceleration for transformati
although vertex, normal, and texture coordinate transformations are supported and optimized
the target platform. These operations are therefore rated PG.

Application designers wishing to perform these operations internally are referred to the “Ope
Correctness Tips” provided in the OpenGL Programming Guide; directions are given to allow 2D 
rasterization specification. Note that the viewport transformation is always enabled and thus 
be set to properly generate the proper window coordinates.

4.3.3.6 Clipping

The Intel740™ graphics accelerator OpenGL implementation does not provide hardware 
acceleration for view-volume or client clip plane clipping. These operations will require a softw
clipping stage prior to rasterization.

4.3.3.7 Current Raster Position

Not all operations which rely on the current raster position are hardware accelerated.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-31



Performance Considerations

ns. 
ould 

s or 

ator 
ftware 

d and/

re. 
ation.

equire 

, with 
4.3.3.8 Colors and Coloring

The Intel740™ graphics accelerator does not provide hardware accelerated lighting operatio
Although lighting is supported, applications wishing to perform these operations internally sh
ensure that lighting is disabled in OpenGL.

Both flat shading modes (SMOOTH and FLAT) are supported by the Intel740™ graphics 
accelerator hardware.

4.3.4 Rasterization

4.3.4.1 Antialiasing

Line and polygon smoothing is supported by the Intel740™ graphics accelerator hardware.

4.3.4.2 Points

Aliased points are rendered by the Intel740™ graphics accelerator hardware using short line
triangles. Antialiased points will require software rasterization.

4.3.4.3 Line Segments

Only unit-width aliased or anti-aliased lines are supported by the Intel740™ graphics acceler
hardware. Stippled and/or wide lines are not supported by the hardware and will require a so
or hybrid rasterization phase.

4.3.4.4 Polygons

Polygon culling is supported by the Intel740™ graphics accelerator hardware, as are stipple
or anti-aliased polygons. 

FILL and LINE polygon modes are supported by the Intel740™ graphics accelerator hardwa
Depth offset is not directly supported by the hardware, but does not require software rasteriz

4.3.4.5 Pixel Rectangles

Pixel rectangles are not supported by the Intel740™ graphics accelerator hardware and will r
software rasterization.

4.3.4.6 Bitmaps

Bitmaps are not supported by the Intel740™ graphics accelerator hardware and will require 
software rasterization.

4.3.4.7 Texturing

All texture mapping functions are supported by the Intel740™ graphics accelerator hardware
the following exceptions:

• Border colors are ignored (textures are clamped to the edges)

• BLEND texture function requires software rasterization
4-32 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations

are 

 

sked.

 

4.3.4.8 Fog

The Intel740™ graphics accelerator hardware supports linear interpolation of the fog factor. 
Setting the FOG_HINT to NICEST when EXP or EXP2 modes are selected will require softw
rasterization.

4.3.4.9 Antialiasing Application

Line and polygon smoothing is supported by the Intel740™ graphics accelerator hardware.

4.3.5 Fragments And The Frame Buffer

4.3.5.1 Per-Fragment Operations

The following table defines which pre-fragment operations are included or excluded from the
performance set.

 

4.3.5.2 Whole Framebuffer Operations

Drawing to the FRONT_AND_BACK will require two rasterization passes (internal to the 
OpenGL implementation). Stereo and auxiliary buffers are not supported.

Use of ColorMask should be limited to enabling or disabling all the color components 
concurrently. Software rasterization will be required if only some of the color components ma

Those “whole frame buffer” operations related to stencil or accumulation buffers will require 
software rasterization.

4.3.5.3 Drawing, Reading, and Copying Pixels

Only “pure” copy pixel operations are hardware accelerated. Pixel reads will be performed in
software.

Table 4-7. Included and Excluded Pre-Fragment Operations

Operation Classification†

Pixel Ownership SW Emulation (when drawing to an occluded front 
buffer)

Scissor SW Emulation

Alpha Test HW Accelerated

Stencil SW Emulation

Depth Buffer Test HW Accelerated

Blending HW Accelerated, though destination alpha buffer is 
not supported

Dithering HW Accelerated

Logical Operation SW Emulation

†  See also Section 4.3.1.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-33



Performance Considerations

/SW 

brid.”
4.3.6 Special Functions

The special functions (listed below) are all performed by the CPU and are therefore rated “HW
Hybrid.”

• Display lists

• Flush and Finish

• Evaluators

• Selection

• Feedback

4.3.7 State And State Requests

All of the state request commands are performed in software are therefore rated “HW/SW Hy

4.3.8 GL Command Summary

The following table provides “performance ratings” on a per-command basis, with notes on 
parameter settings.

Table 4-8. Command Performance Ratings  (Sheet 1 of 5)

Command/Feature Classification † Comment/Exception

glAccum HW/SW Hybrid

glAlphaFunc HW Accelerated

glAreTexturesResident HW/SW Hybrid

glArrayElement HW/SW Hybrid

glBegin HW/SW Hybrid

glBindTexture HW/SW Hybrid

glBitmap SW Emulation

glBlendFunc HW Accelerated

glCallList HW/SW Hybrid

glCallLists HW/SW Hybrid

glClear HW Accelerated

glClearAccum SW Emulation

glClearColor HW Accelerated

glClearDepth HW Accelerated

glClearIndex SW Emulation color index not supported

glClearStencil SW Emulation

glClipPlane HW/SW Hybrid requires software clipping

glColor HW/SW Hybrid

glColorMask HW Accelerated/SW 
Emulation

HW Accelerated: only when all channels are 
masked or enabled together

†  See also Section 4.3.1.
4-34 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations
glColorMaterial HW/SW Hybrid

glColorPointer HW/SW Hybrid

glCopyPixels HW Accelerated/SW 
Emulation HW Accelerated: for simple copies

glCopyTex* HW Accelerated/SW 
Emulation HW Accelerated: for simple copies

glCullFace HW Accelerated

glDeleteLists HW/SW Hybrid

glDeleteTextures HW/SW Hybrid

glDepthFunc HW Accelerated

glDepthMask HW Accelerated

glDepthRange HW/SW Hybrid

glDisable - see glEnable

glDisableClientState HW/SW Hybrid

glDrawArrays HW/SW Hybrid

glDrawBuffer HW Accelerated HW Accelerated: only NONE, FRONT or BACK

glDrawElements HW/SW Hybrid

glDrawPixels HW Accelerated/SW 
Emulation HW Accelerated: for simple copies

glEdgeFlag HW Accelerated

glEdgeFlAGPointer HW/SW Hybrid

glEnable

  *_ARRAY HW/SW Hybrid

  ALPHA_TEST HW Accelerated

  AUTO_NORMAL HW/SW Hybrid

  BLEND HW Accelerated/SW 
Emulation

SW Emulation: destination alpha buffer not 
supported

  CLIP_PLANEi HW/SW Hybrid

  COLOR_MATERIAL HW/SW Hybrid

  CULL_FACE HW Accelerated

  DEPTH_TEST HW Accelerated

  DITHER HW Accelerated

  FOG HW Accelerated/SW 
Emulation

SW Emulation: when FOG_HINT == NICEST 
and not LINEAR fog

  LIGHTi HW/SW Hybrid

  LIGHTING HW/SW Hybrid

  LINE_SMOOTH HW Accelerated

  LINE_STIPPLE HW Accelerated/SW 
Emulation HW Accelerated: trivial patterns

Table 4-8. Command Performance Ratings  (Sheet 2 of 5)

Command/Feature Classification † Comment/Exception

†  See also Section 4.3.1.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-35



Performance Considerations
  *_LOGIC_OP HW Accelerated/SW 
Emulation HW Accelerated trivial operations

  MAP* HW/SW Hybrid

  NORMALIZE HW/SW Hybrid

  POINT_SMOOTH SW Emulation

  POLYGON_OFFSET* HW/SW Hybrid

  POLYGON_SMOOTH HW Accelerated

  POLYGON_STIPPLE HW Accelerated

  SCISSOR_TEST SW Emulation

  STENCIL_TEST SW Emulation

  TEXTURE_*D HW/SW Hybrid

  TEXTURE_GEN* HW/SW Hybrid

glEnd -

glEndList HW/SW Hybrid

glEval* HW/SW Hybrid

glFeedbackBuffer HW/SW Hybrid

glFinish HW/SW Hybrid

glFlush HW/SW Hybrid

glFog HW Accelerated/SW 
Emulation

SW Emulation: when FOG_HINT == NICEST 
and not LINEAR

glFrontFace HW Accelerated

glFrustrum HW/SW Hybrid

glGenLists HW/SW Hybrid

glGenTextures HW/SW Hybrid

glGet* HW/SW Hybrid

glHint - depends on hint

glIndex* SW Emulation color index not supported

glInitNames HW/SW Hybrid

glInterleavedArrays HW/SW Hybrid

glIs* HW/SW Hybrid

glLight HW/SW Hybrid

glLightModel HW/SW Hybrid

glLineStipple HW Accelerated/SW 
Emulation HW Accelerated: when solid

glLineWidth HW Accelerated/SW 
Emulation HW Accelerated: when 1.0

glListBase HW/SW Hybrid

glLoadIdentity HW/SW Hybrid

glLoadMatrix HW/SW Hybrid

Table 4-8. Command Performance Ratings  (Sheet 3 of 5)

Command/Feature Classification † Comment/Exception

†  See also Section 4.3.1.
4-36 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations
glLoadName HW/SW Hybrid

glLogicOp HW Accelerated/SW 
Emulation HW Accelerated: when CLEAR, COPY or SET

glMap* HW/SW Hybrid

glMaterial HW/SW Hybrid

glMatrixMode HW/SW Hybrid

glMultMatrix HW/SW Hybrid

glNewList HW/SW Hybrid

glNormal HW/SW Hybrid

glNormalPointer HW/SW Hybrid

glOrtho HW/SW Hybrid

glPassThrough HW/SW Hybrid

glPixelMap HW Accelerated/SW 
Emulation HW Accelerated: trivial operations

glPixelStore HW Accelerated/SW 
Emulation HW Accelerated: trivial operations

glPixelTransfer HW Accelerated/SW 
Emulation HW Accelerated: trivial operations

glPixelZoom SW Emulation

glPointSize HW Accelerated/
HW/SW Hybrid HW Accelerated: only for unit width

glPolygonMode HW Accelerated/
HW/SW Hybrid HW Accelerated: when FILL or LINE

glPolygonOffset HW/SW Hybrid

glPolygonStipple HW Accelerated

glPopAttrib HW/SW Hybrid

glPopMatrix HW/SW Hybrid

glPopName HW/SW Hybrid

glPrioritizeTextures HW/SW Hybrid

glPushAttrib HW/SW Hybrid

glPushMatrix HW/SW Hybrid

glPushName HW/SW Hybrid

glRasterPos HW/SW Hybrid

glReadBuffer SW Emulation

glReadPixels SW Emulation

glRect HW Accelerated

glRenderMode HW Accelerated/
HW/SW Hybrid

HW Accelerated: RENDER; HW/SW Hybrid:  
SELECT or FEEDBACK

glRotate HW/SW Hybrid

glScale HW/SW Hybrid

Table 4-8. Command Performance Ratings  (Sheet 4 of 5)

Command/Feature Classification † Comment/Exception

†  See also Section 4.3.1.
Intel740™ Graphics Accelerator Software Developer’s Manual 4-37



Performance Considerations
glScissor SW Emulation

glSelectBuffer HW/SW Hybrid

glShadeModel HW Accelerated

glStencil* SW Emulation

glTexCoord HW Accelerated

glTexEnv HW Accelerated/SW 
Emulation SW Emulation: BLEND

glTexGen HW/SW Hybrid

glTexImage1d HW/SW Hybrid border colors ignored

glTexImage2d HW/SW Hybrid border colors ignored

glTexParameter HW Accelerated/SW 
Emulation

SW Emulation: *_MIPMAP_LINEAR and 
TEXTURE_BORDER_COLOR

glTextureSubImage* HW/SW Hybrid

glTranslate HW/SW Hybrid

glVertex HW/SW Hybrid

glVertexPointer HW/SW Hybrid

glViewport HW/SW Hybrid

Table 4-8. Command Performance Ratings  (Sheet 5 of 5)

Command/Feature Classification † Comment/Exception

†  See also Section 4.3.1.
4-38 Intel740™ Graphics Accelerator Software Developer’s Manual



Performance Considerations
Intel740™ Graphics Accelerator Software Developer’s Manual 4-39



Appendix A.  Creating a VPE Port 
Sample A

VPE.H File Listing

// File Name: vpe.h

#include “ddraw.h”

#include <dvp.h>

#define OVERLAY_MAX_WIDTH 720

#define OVERLAY_MAX_HEIGHT 1024

#define YUY2_4CC mmioFOURCC(‘Y’,’U’,’Y’,’2’)

// All the heights given here are the total videoheight.

// Later, When we create, or Update (Crop, prescale ),

// We have to use the field heights ( 1/2 of the videoheight )

// if you are going to change these heights make sure, they

// are even numbers.

#define CROP_TOP 24

#define VIDEO_HEIGHT (CROP_TOP + CROP_HEIGHT )

#define VIDEO_WIDTH 720

#define CROP_HEIGHT 480

#define CROP_WIDTH 720

#define CROP_BOTTOM (CROP_TOP + CROP_HEIGHT)

typedef struct _VPINFO

{

DDVIDEOPORTDESC ddVPDesc;

DDVIDEOPORTINFO ddVPInfo;

LPDIRECTDRAWVIDEOPORT lpVideoPort;

int iCnt;

LPDIRECTDRAWSURFACE lpVideoSurface;

LPDIRECTDRAWSURFACE lpVBISurface;

} VPINFO;

//*****************************************************************

// CVpetestApp:

//*****************************************************************

class CVpetestApp

{

public:

// contructor

CVpetestApp();

// destructor

~CVpetestApp();

BOOL bOverlayVisible ;

BOOL bVideoOn ;
Intel740 Software User’s Guide A-1



Appendix A. Creating a VPE Port Sample
// initializations

HRESULT Initialize(HWND);

HRESULT CreateDriver();

// surface manipulations

HRESULT CreateSurface();

HRESULT CreateOverlay();

HRESULT ShowOverlay();

HRESULT HideOverlay();

// display manipulations

HRESULT SetColorkey() ;

HRESULT SetDisplayMode();

HRESULT RestoreDisplayMode();

// frame display

void SetBobMode();

// deallocations

void DestroyDriver();

void ReleaseOverlay();

void ReleasePrimarySurface();

void ReleaseVideoPort();

// setup

void PreSetupVideoPort();

void SetupVideoPortforDVD() ;

void ResetVideoPortFlags() ;

// video port information

LPDDVIDEOPORTDESC GetddVPDesc();

LPDDVIDEOPORTINFO GetddVPInfo();

// video port manipulations

HRESULT CreateVideoPort(void);

HRESULT StartVideoPort(void);

HRESULT UpdateVideoPort(void);

HRESULT StopVideoPort(void);

// video display information

void GetVideoDisplayValues(RECT *rVPEsrc, SIZE *sPreScale, SIZE

*sOverlay, SIZE *sClientWindow ) ;

void GetVideoDisplayValues(RECT *rVPEsrc ) ;

SIZE sVideoPortSize ;

private:

LPDIRECTDRAW lpDD;// The directdraw object

GUID *lpDriverGUID;// Pointer to a unique GUID which

// represents the display device. Will be

// set to NULL,to use the default driver.

LPDIRECTDRAWSURFACE lpdds;

LPDIRECTDRAWSURFACE lpOverlay;

LPDDVIDEOPORTCONTAINER lpDVP;

VPINFO ddVideoPort;
A-2 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
HWND hWndMain;

DDPIXELFORMAT ddpfInputFormat;

DDPIXELFORMAT ddpfVBIOutputFormat;

DDPIXELFORMAT ddpfVBIInputFormat;

SIZE sDisplayOverlaySize;

BOOL bScaleAndZoom;

};

//*****************************************************************

VPE.CPP File Listing

// File Name: vpe.cpp

#include “vpe.h”

#include <stdio.h>

#include <math.h>

#include <CONIO.H>

#include “ddutil.h”

#define YUY2_4CC mmioFOURCC(‘Y’,’U’,’Y’,’2’)

BOOL fDoBob = TRUE;

extern BOOL bFull;

int iAdjust_Bottom;

int iAdjust_Right;

//*****************************************************************

// CVpetestApp

//

// CVpetestApp construction

//*****************************************************************

CVpetestApp::CVpetestApp()

{

// no specific needs

} /* CVpetestApp */

//*****************************************************************

// ~CVpetestApp

//

// CVpetestApp destruction

//*****************************************************************

CVpetestApp::~CVpetestApp()

{

DestroyDriver();

} /* ~CVpetestApp */

//*****************************************************************
Intel740 Software User’s Guide A-3



Appendix A. Creating a VPE Port Sample
// Initialize

//

// Set the DirectDraw objects to NULL, initialize the flags, and begin // setting 
up the DirectDraw objects

//*****************************************************************

HRESULT CVpetestApp::Initialize(HWND hwnd)

{

HRESULT ddrval;

lpDD = NULL;

lpDVP = NULL;

lpDriverGUID = NULL; // Set to NULL to use the default disp drvr

hWndMain = hwnd;

bOverlayVisible = FALSE;

bVideoOn = FALSE;

ddrval = CreateDriver();

return ddrval; 

} /* Initialize */

//*****************************************************************

// CreateDriver

//

// Create the DirectDraw object and get the video port interface

//*****************************************************************

HRESULT CVpetestApp::CreateDriver()

{

HRESULT ddrval;

LPDIRECTDRAW lpdd;

// Create DirectDraw object, using default display adapter

ddrval = DirectDrawCreate(lpDriverGUID, &lpdd, NULL);

if (DD_OK == ddrval)

lpDD = lpdd;

else

return ddrval;

if (NULL == lpDVP)

{

// Retrieve Video Port Container Interface

ddrval = lpDD->QueryInterface( IID_IDDVideoPortContainer,

(LPVOID *)&lpDVP);

if ( NULL == lpDVP )

return ddrval;

}

// Set application as a standard windows application

ddrval = lpDD->SetCooperativeLevel(hWndMain, DDSCL_NORMAL);

return ddrval; 

} /* CreateDriver */

//*****************************************************************

// SetDisplayMode

//
A-4 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
// Setup for fullscreen mode

//

//*****************************************************************

HRESULT CVpetestApp::SetDisplayMode()

{

HRESULT ddrval ;

// set flag to indicate fullscreen mode

bFull = TRUE;

// Set control level to exclusive, fullscreen mode

lpDD->SetCooperativeLevel(hWndMain,

DDSCL_EXCLUSIVE|DDSCL_FULLSCREEN);

// Set the display mode to 720x480

ddrval = lpDD->SetDisplayMode(720, 480, 0 );

lpDD->SetCooperativeLevel(hWndMain, DDSCL_FULLSCREEN);

// clean-up routines

ReleaseVideoPort();

ReleaseOverlay();

ReleasePrimarySurface();

// setup routines

PreSetupVideoPort();

SetupVideoPortforDVD();

// build resources

CreateSurface();

CreateVideoPort();

CreateOverlay();

SetColorkey();

// display data

StartVideoPort();

ShowOverlay();

return ddrval;

} /* SetDisplayMode */

//*****************************************************************

// RestoreDisplayMode

//

// Return display mode to previous setting and reset cooperative level

//*****************************************************************

HRESULT CVpetestApp::RestoreDisplayMode()

{

HRESULT ddrval;

// returns display mode to previous setting

ddrval = lpDD->RestoreDisplayMode();

// we are currently in exclusive mode, so return to normal

lpDD->SetCooperativeLevel(hWndMain, DDSCL_NORMAL);
Intel740 Software User’s Guide A-5



ReleaseVideoPort();

ReleaseOverlay();

ReleasePrimarySurface();

// set flag to indicate we are no longer in fullscreen mode

bFull = FALSE;

return ddrval;

} /* RestoreDisplayMode */

//*****************************************************************

// ReleaseOverlay

//

// Destroy overlay

//*****************************************************************

void CVpetestApp::ReleaseOverlay()

{

HRESULT ddrval ;

if ( lpOverlay != NULL )

{

// decrement lpOverlay’s reference count (COM -- IUnknown)

ddrval = lpOverlay->Release();

lpOverlay = NULL ;

}

} /* ReleaseOverlay */

//*****************************************************************

// ReleasePrimarySurface

//

// Destroy the primary surface

//*****************************************************************

void CVpetestApp::ReleasePrimarySurface()

{

HRESULT ddrval ;

// Release DirectDraw surfaces

if ( lpdds != NULL )

{

// decrement lpdds’ reference count (COM -- IUnknown)

ddrval = lpdds->Release() ;

lpdds = NULL ;

}

} /* ReleasePrimarySurface */

//*****************************************************************

// ReleaseVideoPort

//

// Destroy the video port

//*****************************************************************

void CVpetestApp::ReleaseVideoPort()



Appendix A. Creating a VPE Port Sample
{

HRESULT ddrval ;

if ( ddVideoPort.lpVideoPort != NULL )

{

// decrement reference count (COM -- IUnknown)

ddVideoPort.lpVideoPort->Release();

ddVideoPort.lpVideoPort = NULL;

}

//Release VideoPort

if ( lpDVP != NULL )

{

ddrval = lpDVP->Release();

lpDVP = NULL;

}

} /* ReleaseVideoPort */

//*****************************************************************

// DestroyDriver

//

// Destroy all associated objects and DirectDraw object

//*****************************************************************

void CVpetestApp::DestroyDriver()

{

/* Clean up and dump all objects */

ReleaseVideoPort();

ReleaseOverlay();

ReleasePrimarySurface();

//Release DirectDrawObject

if (lpDD != NULL )

{

lpDD->Release();

lpDD = NULL;

}

} /* DestroyDriver */

//*****************************************************************

// GetddVPDesc

//

// Access to the video port description

//*****************************************************************

LPDDVIDEOPORTDESC CVpetestApp::GetddVPDesc()

{

LPDDVIDEOPORTDESC lpddVPDesc;

lpddVPDesc = &(ddVideoPort.ddVPDesc);

return lpddVPDesc;

} /* GetddVPDesc */

//*****************************************************************

// GetddVPInfo

//
Intel740 Software User’s Guide A-7



Appendix A. Creating a VPE Port Sample
// Access to video port information

//*****************************************************************

LPDDVIDEOPORTINFO CVpetestApp::GetddVPInfo()

{

LPDDVIDEOPORTINFO lpddVPInfo;

lpddVPInfo = &(ddVideoPort.ddVPInfo);

return lpddVPInfo;

} /* GetddVPInfo */

//*****************************************************************

// PreSetupVideoPort

//

// Add all video port standard fare with VBI and YUV

//*****************************************************************

void CVpetestApp::PreSetupVideoPort()

{

LPDDVIDEOPORTDESC lpddVPDesc;

LPDDVIDEOPORTINFO lpddVPInfo;

lpddVPDesc = &(ddVideoPort.ddVPDesc);

lpddVPInfo = &(ddVideoPort.ddVPInfo);

// init videoport description

memset(lpddVPDesc, 0, sizeof(DDVIDEOPORTDESC)); // block memory

lpddVPDesc->dwSize = sizeof(DDVIDEOPORTDESC);

lpddVPDesc->dwMicrosecondsPerField = 16000; // Any Non-0 value;

lpddVPDesc->dwMaxPixelsPerSecond = 8000; // Any Non Zero Value;

lpddVPDesc->dwVideoPortID = 0; // Should be Zero

// init videoport connect info

lpddVPDesc->VideoPortType.dwSize = sizeof(DDVIDEOPORTCONNECT);

memcpy(&(lpddVPDesc->VideoPortType.guidTypeID),

&DDVPTYPE_E_HREFL_VREFL, sizeof(GUID));

// init videoport info

memset(lpddVPInfo, 0, sizeof(DDVIDEOPORTINFO));

lpddVPInfo->dwSize = sizeof(DDVIDEOPORTINFO);

lpddVPInfo->dwOriginX = 0;

lpddVPInfo->dwOriginY = 0;

lpddVPInfo->dwVBIHeight = 0 ;

lpddVPInfo->lpddpfInputFormat = &ddpfInputFormat; 

// format written to video port

// Output format of the VBI data

lpddVPInfo->lpddpfVBIOutputFormat = &ddpfVBIOutputFormat;

// Input format of the VBI data

lpddVPInfo->lpddpfVBIInputFormat = &ddpfVBIInputFormat;

 

memset(&ddpfInputFormat, 0, sizeof(DDPIXELFORMAT));

memset(&ddpfVBIInputFormat, 0, sizeof(DDPIXELFORMAT));

memset(&ddpfVBIOutputFormat, 0, sizeof(DDPIXELFORMAT));
A-8 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
ddpfInputFormat.dwFlags = DDPF_FOURCC; // Using YUV surfaces

ddpfInputFormat.dwFourCC = YUY2_4CC;

lpddVPInfo->lpddpfInputFormat->dwSize = sizeof(DDPIXELFORMAT);

lpddVPInfo->lpddpfVBIInputFormat->dwSize = sizeof(DDPIXELFORMAT);

lpddVPInfo->lpddpfVBIOutputFormat->dwSize= sizeof(DDPIXELFORMAT);

ddpfVBIInputFormat.dwFlags = DDPF_FOURCC; // Using YUV surfaces

ddpfVBIInputFormat.dwFourCC = YUY2_4CC;

} /* PreSetupVideoPort */

//*****************************************************************

// SetupVideoPortDVD

//

// Set up the video port for default 740x480, 8 bit port configuration

//*****************************************************************

void CVpetestApp::SetupVideoPortforDVD()

{

PreSetupVideoPort();

LPDDVIDEOPORTDESC lpddVPDesc;

LPDDVIDEOPORTINFO lpddVPInfo;

lpddVPDesc = &(ddVideoPort.ddVPDesc);

lpddVPInfo = &(ddVideoPort.ddVPInfo);

iAdjust_Bottom = 2;// size adjustments

iAdjust_Right = 8;

lpddVPInfo->dwVPFlags = 0;

sVideoPortSize.cx = VIDEO_WIDTH + iAdjust_Right;

sVideoPortSize.cy = VIDEO_HEIGHT + iAdjust_Bottom;

lpddVPInfo->dwOriginX = 0;

lpddVPInfo->dwOriginY = 0;

// fields are 1/2 size

iAdjust_Bottom /= 2;

lpddVPDesc->dwFieldHeight = sVideoPortSize.cy / 2;

if (fDoBob)

{

lpddVPDesc->VideoPortType.dwFlags = 0; // MUST use

// Noninterlaced

}

else

{

lpddVPDesc->VideoPortType.dwFlags = DDVPCONNECT_INTERLACED;

lpddVPInfo->dwVPFlags |= DDVP_INTERLEAVE;

}

// field width is the same

lpddVPDesc->dwFieldWidth = sVideoPortSize.cx + iAdjust_Right;

lpddVPDesc->dwVBIWidth = lpddVPDesc->dwFieldWidth;

lpddVPDesc->VideoPortType.dwPortWidth = 8;

lpddVPDesc->VideoPortType.dwFlags |= DDVPCONNECT_VACT;
Intel740 Software User’s Guide A-9



Appendix A. Creating a VPE Port Sample
lpddVPDesc->VideoPortType.dwFlags |= DDVPCONNECT_DOUBLECLOCK;

lpddVPInfo->dwVPFlags |= DDVP_AUTOFLIP;

lpddVPInfo->rCrop.left = 0;

// Microsoft requires the rCrop.right to be inclusive of endpoint

lpddVPInfo->rCrop.right = sVideoPortSize.cx; //640 ;

// We are dividing by 2, so that the value will be in FieldHeight

lpddVPInfo->rCrop.top = CROP_TOP / 2; //20 ;

// Microsoft requires the rCrop.bottom be inclusive of endpoint

lpddVPInfo->rCrop.bottom = lpddVPDesc->dwFieldHeight;

lpddVPInfo->dwVPFlags |= DDVP_CROP;

} /* SetupVideoPortforDVD */

//*****************************************************************

// ResetVideoPortFlags

//

// Set video port flags to default values

//*****************************************************************

void CVpetestApp::ResetVideoPortFlags()

{

ddVideoPort.ddVPInfo.dwVPFlags = DDVP_AUTOFLIP;

if (fDoBob)

{

ddVideoPort.ddVPDesc.VideoPortType.dwFlags =

DDVPCONNECT_VACT | DDVPCONNECT_DOUBLECLOCK;

}

else

{

ddVideoPort.ddVPDesc.VideoPortType.dwFlags =

DDVPCONNECT_VACT | DDVPCONNECT_INTERLACED |

DDVPCONNECT_DOUBLECLOCK;

ddVideoPort.ddVPInfo.dwVPFlags |= DDVP_INTERLEAVE;

}

} /* ResetVideoPortFlags */

//*****************************************************************

// CreateVideoPort

//

// Obtain the video port interface and create the port

//*****************************************************************

HRESULT CVpetestApp::CreateVideoPort()

{

HRESULT ddRVal;

if ( NULL == lpDVP) // check the video port container

{

// Retrieve Video Port Container Interface

ddRVal = lpDD->QueryInterface( IID_IDDVideoPortContainer,

(LPVOID *)&lpDVP);

if ( NULL == lpDVP )

return ddRVal;
A-10 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
}

if ( ddVideoPort.lpVideoPort != NULL ) // container is not empty

ddVideoPort.lpVideoPort->Release(); // release container 

// create the video port

ddRVal = lpDVP->CreateVideoPort(0L, &(ddVideoPort.ddVPDesc),

&(ddVideoPort.lpVideoPort), NULL);

return ddRVal;

} /* CreateVideoPort */

//*****************************************************************

// CreateSurface

//

// Creates a primary direct draw surface.

//*****************************************************************

HRESULT CVpetestApp::CreateSurface()

{

HRESULT ddrval;

DDSURFACEDESC ddsd;

// setup surface info

ddsd.dwSize = sizeof ( ddsd );

ddsd.dwFlags = DDSD_CAPS;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the surface

ddrval = lpDD->CreateSurface( &ddsd, &lpdds, NULL );

return ddrval;

} /* CreateSurface */

//*****************************************************************

// CreateOverlay

//

// Create a DirectDraw surface as an overlay

//*****************************************************************

HRESULT CVpetestApp::CreateOverlay()

{

HRESULT ddrval;

DDSURFACEDESC ddsd;

ddsd.dwSize = sizeof ( ddsd );

ddsd.dwFlags = DDSD_CAPS;

ddsd.dwFlags |= DDSD_HEIGHT | DDSD_WIDTH; // set height, width

ddsd.dwWidth = sVideoPortSize.cx;

ddsd.dwHeight = sVideoPortSize.cy;

ddsd.dwFlags |= DDSD_PIXELFORMAT; // set pixel format

ddsd.ddpfPixelFormat.dwSize = 0 ;

ddsd.ddpfPixelFormat.dwFlags = DDPF_FOURCC; // using YUV format

ddsd.ddpfPixelFormat.dwFourCC = YUY2_4CC;

ddsd.ddpfPixelFormat.dwRGBBitCount = 16; // using 16-bit color

ddsd.dwFlags |= DDSD_BACKBUFFERCOUNT; // adding one back buffer
Intel740 Software User’s Guide A-11



Appendix A. Creating a VPE Port Sample
ddsd.dwBackBufferCount = 1;

ddsd.ddsCaps.dwCaps = DDSCAPS_COMPLEX; // overlay surface

//characteristics

ddsd.ddsCaps.dwCaps |= DDSCAPS_OVERLAY;

ddsd.ddsCaps.dwCaps |= DDSCAPS_FLIP;

ddsd.ddsCaps.dwCaps |= DDSCAPS_VIDEOPORT;

ddrval = lpDD->CreateSurface( &ddsd, &lpOverlay, NULL );

return ddrval;

} /* CreateOverlay */

//*****************************************************************

// ShowOverlay

//

// Display an overlay on the screen

//*****************************************************************

HRESULT CVpetestApp::ShowOverlay()

{

LPDIRECTDRAWSURFACE psurf;

LPDIRECTDRAWSURFACE pdest;

HRESULT ddrval = DD_OK;

RECT srcrect;

RECT destrect;

RECT windowrect;

RECT clientrect;

char debugstring[80];

DDOVERLAYFX dofx;

// check to see if overlay and surface are lost

// (in case another application required the memory)

if (lpOverlay->IsLost())

lpOverlay->Restore(); // restore the overlay memory

if (lpdds->IsLost())

lpdds->Restore(); // restore the surface memory

GetWindowRect( hWndMain, &windowrect );

GetClientRect( hWndMain, &clientrect );

if ( bVideoOn )

{

if (( clientrect.right - clientrect.left < 1 ) ||

( clientrect.bottom - clientrect.top < 1 ))

{

// turn the overlay off

ddrval = HideOverlay();

}

else

{

// Obtain the video width and height

int iVideoWidth = ddVideoPort.ddVPDesc.dwFieldWidth;

int iVideoHeight = ddVideoPort.ddVPDesc.dwFieldHeight;

if ( ddVideoPort.ddVPInfo.dwVPFlags & DDVP_CROP )

{

A-12 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
// Get cropped size information

iVideoWidth = ddVideoPort.ddVPInfo.rCrop.right -

ddVideoPort.ddVPInfo.rCrop.left;

iVideoHeight = ddVideoPort.ddVPInfo.rCrop.bottom -

ddVideoPort.ddVPInfo.rCrop.top;

}

// Set the video source rectangle(area in the overlay

// surface)

srcrect.left = 0;

srcrect.top = 0;

// The source rectangle is defined by x,y & height & width

srcrect.right = iVideoWidth - iAdjust_Right;

srcrect.bottom = iVideoHeight - iAdjust_Bottom;

// Set the destination rectangle area in primary surface

int iWidth = clientrect.right - clientrect.left;

// divide by two to convert to FieldHeight

int iHeight = ( clientrect.bottom - clientrect.top ) / 2;

 

// Obtain the prescale factors

if ( (iWidth + iAdjust_Right < iVideoWidth ) || (iHeight +

iAdjust_Bottom < iVideoHeight ) )

{

// dest rectangle is smaller than the src rectangle

LONG tempX = iWidth + iAdjust_Right;

LONG tempY = iVideoHeight;

// the i740 scalar requires the width to be a

// multiple of 16.

tempX = tempX - tempX % 16;

// halve the Y value until it is less than dest

// height

while ( tempY > iHeight + iAdjust_Bottom )

tempY /= 2;

ddVideoPort.ddVPInfo.dwPrescaleWidth = tempX;

ddVideoPort.ddVPInfo.dwPrescaleHeight = tempY;

srcrect.right = ddVideoPort.ddVPInfo.dwPrescaleWidth

- iAdjust_Right;

srcrect.bottom =ddVideoPort.ddVPInfo.dwPrescaleHeight

- iAdjust_Bottom;

// set video port flags to prescale

DWORD dwTempFlags;

dwTempFlags = ddVideoPort.ddVPInfo.dwVPFlags;

ddVideoPort.ddVPInfo.dwVPFlags |= DDVP_PRESCALE;

// update the video

ddrval = UpdateVideoPort();

if ( ddrval != DD_OK )

{

sprintf(debugstring, “Error occurred at %d %d
Intel740 Software User’s Guide A-13



Appendix A. Creating a VPE Port Sample
%d %d\n”,

ddVideoPort.ddVPInfo.dwPrescaleWidth,

ddVideoPort.ddVPInfo.dwPrescaleHeight,

srcrect.right, srcrect.bottom);

MessageBox(hWndMain,debugstring,”VPE

Error”,MB_OK);

return ddrval;

}

}

else

{

// do not prescale

ddVideoPort.ddVPInfo.dwVPFlags &= ~DDVP_PRESCALE;

// update the video

ddrval = UpdateVideoPort();

if ( ddrval != DD_OK )

return ddrval;

}

if ( fDoBob == FALSE)

srcrect.bottom *= 2 ; // bob algorithm uses 1/2 ht

if ( srcrect.right > OVERLAY_MAX_WIDTH )

// make sure the overlay isn’t too wide

srcrect.right = OVERLAY_MAX_WIDTH - 1; 

if ( srcrect.bottom > OVERLAY_MAX_WIDTH )

 // make sure the overlay isn’t too high

srcrect.bottom = OVERLAY_MAX_HEIGHT - 1;

POINT lefttop, rightbottom;

lefttop.x = clientrect.left;

lefttop.y = clientrect.top;

rightbottom.x = clientrect.right;

rightbottom.y = clientrect.bottom;

// convert client coordinates to screen coordinates

ClientToScreen( hWndMain, &lefttop );

ClientToScreen( hWndMain, &rightbottom);

destrect.left = lefttop.x;

destrect.right = rightbottom.x;

destrect.top = lefttop.y;

destrect.bottom = rightbottom.y;

// get surface ptrs

psurf = lpOverlay;

pdest = lpdds;

// set up overlay fx

memset( &dofx, 0, sizeof( dofx ) );

dofx.dwSize = sizeof( dofx );

// crop when off the edge of the screen

float fZoomX = ( (float)( destrect.right - destrect.left )
A-14 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
/ ( srcrect.right - srcrect.left ) );

float fZoomY = ( (float)( destrect.bottom - destrect.top )

/ ( srcrect.bottom - srcrect.top ) );

// get screen dimensions (resolution)

int screenX = GetSystemMetrics(SM_CXSCREEN);

int screenY = GetSystemMetrics(SM_CYSCREEN);

// check the dest rectangle size and modify if needed

if (destrect.bottom > screenY )

{

srcrect.bottom -= (int) (( destrect.bottom -

(screenY - 1) ) / fZoomY );

destrect.bottom = screenY;

}

if (destrect.right > screenX )

{

srcrect.right -= (int) ( ( destrect.right -

(screenX - 1) ) / fZoomX );

destrect.right = screenX;

}

if (destrect.top < 0)

{

srcrect.top = (int)( ( 0 - destrect.top ) / fZoomY );

destrect.top = 0;

}

else

srcrect.top = 0;

if (destrect.left < 0)

{

srcrect.left = (int)(( 0 - destrect.left ) / fZoomX);

destrect.left = 0;

}

else

srcrect.left = 0;

// check that the new rect dimensions render it visible

if (( srcrect.right - srcrect.left <= 0 ) ||

( srcrect.bottom - srcrect.top <= 0 ))

{

// turn the overlay off

ddrval = HideOverlay();

}

else

{

DWORD dwFlags;

// set flags

if (fDoBob)

dwFlags = DDOVER_SHOW | DDOVER_KEYDEST |

DDOVER_AUTOFLIP | DDOVER_BOB |

DDOVER_REFRESHDIRTYRECTS;

else

dwFlags = DDOVER_SHOW | DDOVER_KEYDEST |
Intel740 Software User’s Guide A-15



Appendix A. Creating a VPE Port Sample
DDOVER_AUTOFLIP |

DDOVER_REFRESHDIRTYRECTS;

// update the overlay

ddrval = psurf->UpdateOverlay(&srcrect,

pdest,&destrect, dwFlags, NULL);

if ( ddrval != DD_OK )

{

sprintf(debugstring, “Error occurred at %d %d

%d %d == %d %d %d %d\n”, srcrect.left,

srcrect.top, srcrect.right,

srcrect.bottom, destrect.left,

destrect.top, destrect.right,

destrect.bottom);

OutputDebugString(debugstring);

return ddrval;

}

else

bOverlayVisible = TRUE;

}

// update sDisplayOverlaySize (This is used for status

// display)

sDisplayOverlaySize.cx = srcrect.right - srcrect.left + 1;

if (fDoBob)

sDisplayOverlaySize.cy = (srcrect.bottom -

srcrect.top) * 2 + 1;

else

sDisplayOverlaySize.cy = srcrect.bottom - srcrect.top

+ 1;

}

}

return ddrval;

} /* ShowOverlay */

//*****************************************************************

// HideOverlay

//

// Turn the overlay off

//*****************************************************************

HRESULT CVpetestApp::HideOverlay()

{

HRESULT ddrval;

// turn the overlay off

ddrval = lpOverlay ->UpdateOverlay(NULL, lpdds, NULL,

DDOVER_HIDE | DDOVER_REFRESHDIRTYRECTS, NULL );

if ( ddrval == DD_OK )

bOverlayVisible = FALSE;

return ddrval;

} /* HideOverlay */

//*****************************************************************
A-16 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
// SetColorKey

//

// Match the color and set it as the transparent color.

//*****************************************************************

HRESULT CVpetestApp::SetColorkey()

{

HRESULT ddrval;

DDCOLORKEY ddck;

ddck.dwColorSpaceLowValue = DDColorMatch(lpdds,

RGB(0xff,0x00,0xff));

ddck.dwColorSpaceHighValue = ddck.dwColorSpaceLowValue;

ddrval = lpOverlay ->SetColorKey(DDCKEY_DESTOVERLAY, &ddck );

if ( ddrval == DD_OK )

ddrval = lpdds ->SetColorKey(DDCKEY_DESTOVERLAY, &ddck );

return ddrval = DD_OK ;

} /* SetColorkey */

//*****************************************************************

// StartVideoPort

//

// Gets the video port options (displays the dialog) and then tells

// DDRAW to start the video.

//*****************************************************************

HRESULT CVpetestApp::StartVideoPort()

{

HRESULT ddRVal;

// designate the overlay as the recipient of the vid. data stream

if ( ddVideoPort.lpVideoPort )

ddRVal = ddVideoPort.lpVideoPort->

SetTargetSurface(lpOverlay, DDVPTARGET_VIDEO);

// start the flow of video data

if ( ddRVal == DD_OK )

ddRVal = ddVideoPort.lpVideoPort->

StartVideo(&(ddVideoPort.ddVPInfo));

if ( ddRVal == DD_OK )

bVideoOn = TRUE;

return ddRVal;

} /* StartVideoPort */

//*****************************************************************

// UpdateVideoPort

//

// Gets the video port options (displays the dialog) and then tells

// DDRAW to update the video.

//*****************************************************************

HRESULT CVpetestApp::UpdateVideoPort()
Intel740 Software User’s Guide A-17



Appendix A. Creating a VPE Port Sample
{

HRESULT ddRVal;

// update the video

ddRVal = ddVideoPort.lpVideoPort->

UpdateVideo(&(ddVideoPort.ddVPInfo));

if ( ddRVal == DD_OK )

bVideoOn = TRUE;

return ddRVal;

} /* UpdateVideoPort */

//*****************************************************************

// StopVideoPort

//

// Tells DirectDraw to stop the video.

//*****************************************************************

HRESULT CVpetestApp::StopVideoPort()

{

HRESULT ddRVal;

ddRVal = ddVideoPort.lpVideoPort->StopVideo();

if ( ddRVal == DD_OK )

bVideoOn = FALSE;

return ddRVal;

} /* StopVideoPort */

//*****************************************************************

// GetVideoDisplayValues

//

// Copy video port display values to the rectangle pointer

//*****************************************************************

void CVpetestApp::GetVideoDisplayValues(RECT *rVPESrc, SIZE *sPreScale,

SIZE *sOverlay, SIZE *sClientWindow )

{

// if there is a cropping rectangle, then use it instead of the

// field dimensions

if ( ddVideoPort.ddVPInfo.dwVPFlags & DDVP_CROP ) 

*rVPESrc = ddVideoPort.ddVPInfo.rCrop; 

else

{

rVPESrc->left = 0;

rVPESrc->top = 0;

rVPESrc->right = ddVideoPort.ddVPDesc.dwFieldWidth - 1;

rVPESrc->bottom = ddVideoPort.ddVPDesc.dwFieldHeight - 1;

}

// if prescale values are used, use those factors

if ( ddVideoPort.ddVPInfo.dwVPFlags & DDVP_PRESCALE ) 

{

sPreScale->cx = ddVideoPort.ddVPInfo.dwPrescaleWidth;

sPreScale->cy = ddVideoPort.ddVPInfo.dwPrescaleHeight;

}

else
A-18 Intel740 Software User’s Guide



Appendix A. Creating a VPE Port Sample
{

sPreScale->cx = -1;

sPreScale->cy = -1;

}

*sOverlay = sDisplayOverlaySize;

RECT clientrect;

GetClientRect( hWndMain, &clientrect );

// set width (cx) & height (cy)

sClientWindow->cx = clientrect.right - clientrect.left + 1;

sClientWindow->cy = clientrect.bottom - clientrect.top + 1;

} /* GetVideoDisplayValues */

//*****************************************************************

// GetVideoDisplayValues

//

// Copy video port display values to the rectangle pointer

//*****************************************************************

void CVpetestApp::GetVideoDisplayValues(RECT *rVPESrc )

{

// if there is a cropping rectangle, then use it instead of

// the field dimensions

if ( ddVideoPort.ddVPInfo.dwVPFlags & DDVP_CROP )

*rVPESrc = ddVideoPort.ddVPInfo.rCrop;

else

{

rVPESrc->left = 0;

rVPESrc->top = 0;

rVPESrc->right = ddVideoPort.ddVPDesc.dwFieldWidth - 1;

if (fDoBob)

rVPESrc->bottom = ddVideoPort.ddVPDesc.dwFieldHeight

* 2 - 1;

else

rVPESrc->bottom = ddVideoPort.ddVPDesc.dwFieldHeight

- 1;

}

} /* GetVideoDisplayValues */
Intel740 Software User’s Guide A-19



Appendix A. Creating a VPE Port Sample
A-20 Intel740 Software User’s Guide



Glossary

Accelerated 
Graphics Port (AGP)

A scalable architecture that increases the bandwidth available to 
a graphics controller and provides the performance necessary 
for a graphics controller to do texturing directly from system 
memory.

Alpha Blending Uses a fourth color component which is not displayed but which 
corresponds to the opacity of a surface to control the amount of 
color of a pixel in the source surface to be blended with a pixel in 
the destination surface. 

Antialiasing An algorithm designed to reduce the stair-stepping artifacts 
(sometimes called jaggies) that result from drawing graphic 
primitives on a raster grid. The solution usually relies on the 
multi-bit raster’s ability to display a number of pixel intensities. If 
the intensities of the neighboring pixels lie between the 
background and line intensities, the line becomes slightly 
blurred, and the jagged appearance is thereby diffused. 

API Application Programming Interface

Bitmap A representation, consisting of rows and columns of dots, of a 
graphics image in computer memory. The value of each dot 
(whether it is filled in or not) is stored in one or more bits of data. 
For simple monochrome images, one bit is sufficient to 
represent each dot, but for colors and shades of gray, each dot 
requires more than one bit of data. The more bits used to 
represent a dot, the more colors and shades of gray that can be 
represented.

BitPlane A rectangular array of bits mapped one-to-one with pixels. The 
framebuffer is a stack of bitplanes.

Buffer A group of bitplanes that store a single component (such as 
depth or red) or a single index (such as the color index). 

Clipping A three dimensional operation that reduces the number of 
drawing calculations the CPU makes by eliminating any objects, 
or portions of objects, outside the viewing area.

DDK Driver Development Kit

Depth Cueing Reducing an object’s color and intensity as a function of its 
distance from the observer. For instance, a bright, shiny red ball 
may look duller and darker the farther away it is from the 
observer.

Direct3D (D3D) An Application Programming Interface (API) for manipulating 
and displaying 3-dimensional objects. Developed by Microsoft, 
Direct3D provides programmers with a way to develop 3-D 
programs abstracted from the hardware layer, but which can 
utilize 3-D capabilities of the underlying graphics accelerated 
hardware.
Intel740™ Graphics Accelerator Software Developer’s Manual Glossary-1



Glossary
DirectDraw Microsoft’s new 2D library of graphics API’s, enabling access to 
hardware’s Blitting, clipping and flipping capabilities. DirectDraw 
provides low-level access to the frame buffer and advanced 
features of the display adapter.

DirectDraw Video 
Port Extension 
(VPE)

Microsoft’s extension of DirectDraw to control the flow of data 
from a hardware video port device to a DirectDraw surface in 
video memory. As the VPE specification is finalized, it will be 
merged with the rest of the DirectDraw documentation.

Direct Memory 
Execution (D.M.E.)

Utilization of the entire AGP bandwidth through deep buffering 
and 2x side band signaling with write combining which provides 
the highest sustained data transfer rates across AGP.

DLL Driver Link Library

Double Buffering The process of using two frame buffers for smooth animation. 
Graphical contents of one frame buffer are displayed while 
updates occur on the other buffer. When the updates are 
complete, the buffers are switched. Only complete images are 
displayed, and the process of drawing is not shown. The result is 
the appearance of smooth animation.

Fogging The alteration of the visibility of what is seen, depending on how 
far one is from the object.

Frame Buffer A block of graphics memory that represents the display screen. 

GDI The Windows Graphics Device Interface, a library of video 
display and printer functions for 2D graphics.

GFX Graphics Accelerator

GFXGLDEV Device dependent part of the OpenGL ICD driver

GFXGLICD Device independent portion of the OpenGL driver, which 
includes such items as the geometry and lighting engine.

Gouraud shading Smooth interpolation of colors across a polygon or line 
segment. Colors are assigned at vertices and linearly 
interpolated across the primitive to produce a relatively smooth 
variation in color.    

H.324 New communications standard for sharing video, voice and data 
over a single analog telephone line.

HAL Hardware Abstraction Layer. A specification of a graphics 
hardware’s functionality. Generally implemented into a device 
driver software program. 

Hyper Pipelined 
Architecture

An architecture designed so that many operations are executed 
in parallel to improve performance. 
Glossary-2 Intel740™ Graphics Accelerator Software Developer’s Manual



Glossary
I2C* I2C* (Inter-Integrated Circuit) is a two-wire serial bus/protocol. A 
serial clock line (IICCLK) and serial data line (IICDAT) are used 
to transfer data between a bus master and a slave device. The 
maximum data rate is 100 Kbits/s. A slave may slow down the 
bus by inserting wait states. In the Intel740 graphics accelerator 
a single bus master can be implemented by using two of the 
Intel740 chip GPIO pins; one for IICCLK and one for IICDAT. 
Multiple slaves can be connected to this system (e.g., a TV 
tuner, video decoder, and digital TV encoder). However, only 
one I2C* master is allowed (Intel740 chip). The timing for the 
I2C* is derived from Intel740 chip PCI clock.

ICD Installable Client Driver

Lighting A mathematical formula for approximating the physical effect of 
light from various sources striking objects. Typical lighting 
models use light sources, an object’s position & orientation and 
surface type.

MCD Min-Client Driver, Microsoft’s graphics interface which allows 
hardware acceleration of OpenGl at the rasterization level.

Mipmapping When viewing a distant texture-mapped object in a 3D world, 
many texels make up each pixel seen on the screen, causing 
the textures to often appear aliased or distorted, if point 
sampling, the most common texture-mapping technique, is 
used. Mipmapping solves that problem by precomputing (that is, 
prefiltering) different levels of detail of your texture image, and 
accessing the appropriate level according to the object's 
distance from the camera. For example, a texture image which 
is 16x16 texels, will have four more mipmaps at lower 
resolutions, 8x8, 4x4, 2x2 and 1x1. Bilinear mipmapping 
chooses the closest mipmap image to your pixel's level of detail, 
then performs a bilinear interpolation upon that texture image to 
get the color value for the pixel. Trilinear mipmapping requires 
over twice the computational cost, as it chooses the two closest 
mipmaps, performs a bilinear interpolation on each, then 
averages the two results to arrive at the final screen pixel value.

MMX™ technology A set of 57 multimedia instructions built into Intel's newest 
microprocessors. MMX™ technology-enabled microprocessors 
can handle many common multimedia operations, such as 
digital signal processing (DSP), that are normally handled by a 
separate sound or video card. However, only software especially 
written to call MMX™ technology instructions can take 
advantage of the MMX technology instruction set.

OpenGL OpenGl, originally developed by Silicon Graphics Incorporated 
(SGI) for their graphics workstations; permits applications to 
create high-quality color images independent of windowing 
systems, operating systems, and hardware.

OSR Operating Systems Release

SDK Software Development Kit
Intel740™ Graphics Accelerator Software Developer’s Manual Glossary-3



Glossary
Pixel Short for picture element. The bits at location (x, y) of all the 
bitplanes in the framebuffer constitute the single pixel (x, y). It is 
the smallest discrete unit of a computer or TV tube that can be 
assigned a specific color, the “dots” that make up TV and 
computer screen pictures. 

POTS Video Low cost video conferencing over Plain Old Telephone Service 
(POTS).

Raster A rectangular grid of picture elements, or pixels. The graphical 
data to be displayed on the raster is stored by the frame buffer. 
Raster operations can be performed on some portion or all of 
the raster. Such operations aid in the efficient handling of blocks 
of pixel data. 

Rendering The process of computing a graphical model’s surface qualities, 
such as color, shading, smoothness, and texture, and creating a 
raster image.

Setup Stage responsible for the precalculation of various derivatives 
used by inner loops of rendering algorithms.

Shading The process of interpolating color within the interior of a 
polygon, or between the vertices of a line, during rasterization.

Texel A texture element. A texel is obtained from texture memory and 
represents the color of the texture to be applied to a 
corresponding fragment.

Texture antialiasing Bilinear or trilinear filtering. Also known as sub-texel positioning. 
If a pixel is between texels, the program choses the color of the 
pixel by averaging the adjacent texels’ colors instead of 
assigning it the exact color of one single texel. Without bilinear 
or trilinear filtering, the texture gets very blocky up close as 
multiple pixels get the exact same texel coloring, while the 
texture shimmers at a distance because small position changes 
keep producing large texel changes.

Texture mapping The process of superimposing a 2-D texture or pattern over the 
surface of a 3-D graphical object. This is an efficient method of 
producing the appearance of texture, such as that of wood or 
stone, on a large surface area. 

Three Dimensional 
Graphics

The display of objects and scenes with height, width, and depth 
information. The information is calculated in a coordinate 
system that represents three dimensions via x, y, and z axes. 

VxD Virtual Device Driver.

WDM Win32 Driver Model (WDM) provides a common set of I/O 
services and binary-compatible device drivers for both Windows 
NT and future Windows operating systems. WDM will maximize 
system responsiveness and throughput by providing extremely 
low services and fewer ring transitions that interactive 
applications demand. All WDM drivers execute in Ring 0 and 
have access to low latency services. For backward compatibility, 
a Windows virtualization driver can be implemented to interface 
a hardware-specific legacy application to WDM.
Glossary-4 Intel740™ Graphics Accelerator Software Developer’s Manual



Glossary
Z-buffer The depth buffer in 3-D graphics. The z-buffer memory 
locations, like those in the frame buffer, correspond to the pixels 
on the screen. The z-buffer, however, contains information 
relating only to the z-axis (or depth axis). The z-buffer is used in 
hidden surface removal algorithms, so that for each pixel written, 
the depth of the pixel is stored in the z-buffer. When subsequent 
objects attempt to draw that pixel, that object’s z value is 
compared with the number in the z-buffer, and the write is 
omitted if the object is farther away from the eye.
Intel740™ Graphics Accelerator Software Developer’s Manual Glossary-5



Glossary
Glossary-6 Intel740™ Graphics Accelerator Software Developer’s Manual



Intel™ Graphics Accelerator Software Developer’s Manual Index-1

Index

A
AGP

Primer 2-55
Software Architecture 2-57
2X AGP Support 2-3
2X Interface 2-55

AGP memory
3D Pipeline 2-8

Alpha Blending
Equation For 2-20
Functions 2-22
With DirectX 2-21
With OpenGL 2-21

Alpha Testing 2-23
With DirectX 2-23
With OpenGL 2-23

Antialiasing 2-40
With DirectX 2-41
With OpenGL 2-41

B
Back Face Culling 2-41

With DirectX 2-42
With OpenGL 2-42

BitBLT
AGP 2-43
Color Expansion 2-44

BitBLT Engine 2-42
Buffers

Back buffer 2-38
Double Buffering 2-39
Front buffer 2-38
Pixel Formats and Buffers 2-38
Triple Buffering 2-39
Z-buffer 2-38
Z-buffering 2-39

C
Color Dithering 2-23

With DirectX 2-23
With OpenGL 2-23

Color Keying
With DirectX 2-32

D
Device Driver Debugging Control 3-20
Digital Camera

Video Conferencing 2-46
Direct Memory Execution (DME) 2-2
DirectX 1-1

Color Key Capabilities 3-9
Directdraw Hal Capabilities 3-8
Direct3D Capabilities 3-12
DIRECT3D RenderState Hardware / Software Support 

3-16
Driver Capabilities Of The Surface 3-11
Driver Palette Capabilities 3-10
Driver Software Architecture 3-5
Driver-Specific Capabilities 3-9
Driver-Specific Stretching and Effects Capabilities 3-

10
Functionality Control 3-20
Mini Display Driver 3-6
Supported RenderPrimitives 3-18
Texture Capabilities 3-13

DirectX Programming Environment 3-5
Drawing Formats

Enabling with DirectX 2-38
Enabling with OpenGL 2-38

DVD 1-1
DVD Capabilities 2-50

Creating a VPE Port 2-51
Data Flow for DVD Playback 2-50
Data Flow Steps 2-50
Enabling Copy Protection Using SetMovieMode 2-53
MPEG-2 Movie Playback 2-50
Using TV Out with Copy Protection 2-52

F
FEATURES

Video In/Out Summary 1-2
2D & Display 1-2
3D Features Summary 1-2

Features 1-2
Fog

Density 2-18
Equation 2-17
OpenGL 2-18

G
GDI Escape Interface 3-20
Gouraud Shading 2-24

Flat Shading vs. Gouraud Shading 2-24
With DirectX 2-24
With OpenGL 2-24

H
Hardware

parallelism 2-6
Hardware Cursor 2-44



Index-2 Intel™ Graphics Accelerator Software Developer’s Manual

I
Intercast 2-46

O
OpenGL 1-1

Characteristics of Graphics Operations 3-3
ICD Buffer Allocation 3-2
ICD Driver Architecture 3-2
Independent Client Driver (ICD) 3-2
MCD Architecture 3-1
Mini Client Driver (MCD) 3-1
Programming Environment 3-1
Vertex Arrays 2-15
Vertex Information 2-15

OpenGL Drivers
Geometry Operations 3-3

OpenGL Feature Classification 4-27
OpenGL Programming

Antialiasing Application 4-33
Begin/End Paradigm 4-31
Bitmaps 4-32
Clipping 4-31
Colors and Coloring 4-32
Command Performance Ratings 4-34
Current Raster Position 4-31
Drawing, Reading, and Copying Pixels 4-33
Fog 4-33
Line Segments 4-32
Per-Fragment Operations 4-33
Pixel Rectangles 4-32
Points 4-32
Polygons 4-32
Rating OpenGL Features 4-29
Rectangles 4-31
Special Functions 4-34
Texturing 4-32
Vertex Arrays 4-31
Vertex Specification 4-31
Whole Framebuffer Operations 4-33

openGL Programming
Coordinate Transformation 4-31

OpenGL Programminig
OpenGL Feature Classification 4-27

P
Parallel Data Processing (PDP) 2-3
Performance

Budgeting CPU Clock Cycles 4-18
Concurrency 4-2
CPU Cycle Targets 4-19
CPU Usage Model 4-2
Data Capture 4-20
Direct3D DrawPrimitive vs. Execute Buffers 4-11
D3D Performance vs. Buffer Size (Duty Cycle 4-13
Formula 4-1
High Performance Transparency 4-17
Implications and Analysis 4-9
Improper Usage Model 4-2

Measurements 4-1
OpenGL Display Lists vs. Vertex Buffers 4-12
OpenGL Performance vs. Buffer Size (Duty Cycle) 4-

14
Palette Changes 4-15
Procedural Texture Animation 4-16
Raster Speed Test Method 4-3
Result Summary 4-4
Screen Resolutions 4-18
Special Performance Considerations 4-11
Strategies 4-1
Tests Using Fog, Alpha Blending, Specular, and Anti-

aliasing 4-7
Tests with Full Feature Sets 4-8
Tests With Gouraud Shading Levels 4-6
Texture Sizes 4-15
Triangle Packet Size 4-13
Video 4-19
Z Occlusion 4-10

Precise-Pixel Interpolation (PPI) 2-3
Primitive Types

Direct X 2-14
Primitives

DrawIndexPrimitive 2-14
OpenGL 2-15

Programming Tips
Avoiding Flipping Errors 4-27
Avoiding Stippling Errors 4-27
Dynamic AGP Buffer Placement 4-25
Minimizing State Transitions 4-24
OpenGL Programming 4-27
Optimal Artist Geometry Design 4-26
Optimal Artist Texture Design for Trilinear Filtering 4-

26
Texture Sorting Is Not Required 4-27
Textures 4-21
Using Antialiasing 4-24
Using Color/chroma Keying on Top of Alpha Blended 

Textures 4-26
Using Mipmapping 4-25
Using Texture Palettes 4-25
Using Triple-Buffering 4-24
Using Z-Buffering 4-24
Z-Buffer Multi-pass Shadowing 4-23

R
Related Documents 1-3

S
Specular Highlighting

Specular Color 2-20
Specular highlighting 2-19
Stipple Pattern

With OpenGL 2-25
Stippled Pattern 2-25

With DirectX 2-25
Stretch BLT Engine 2-44



Intel™ Graphics Accelerator Software Developer’s Manual Index-3

T
Texture Blending

DirectX Functions 2-30
OpenGL Modes & Equations 2-31
With OpenGL 2-31

Texture Coordinate Mapping
U, V Space 2-11

Textures
AGP Memory 2-25
Creating a Texture Surface with DirectX 2-27
Creating a Texture Surface with OpenGL 2-28
DirectX Texture Map Formats 2-27
DirectX Wrapping Formats 2-33
Filtering 2-34
Filtering With DirectX 2-35
Filtering With OpenGL 2-35
Mipmapping 2-36
Mipmapping with DirectX 2-37
Mipmapping with OpenGL 2-37
OpenGL Texture Map Formats 2-27
OpenGL Wrapping Formats 2-34
Point Filtering VS. Bilinear Filtering 2-35

Transformations and Lighting 2-14
TV Out

Sample Code Enabling Copy Protection Using 
VIDEOPARAMETERS 2-54

Sample Code for Enabling Copy Protection using 
VIDEOPARAMETERS 2-54

Sample Code for SetMovieMode 2-53
TV Out Interface 2-51

Screen Modes Needed 2-51

V
VBI  1-1, 2-46
VBI and Intercast 2-49
Vertex Types

D3D 2-13
Video 2-46

Video Capture
VfW API  2-47

Video Capture Port
VMI Interface 2-46

Video Capture Programming 2-47
Video Capture System Diagram 2-47
Video Conferencing

Digital Camera 2-46
Plain Old Telephone Service (POTS) 2-46

Video Display Modes 2-45
Video Interface

VfW Capture Driver Capability 3-19
VIDEO IN/OUT FEATURES

Summary 1-2
Video Overlay 2-49

Field Based Content 2-49
Supported Data Formats 2-49

W
Win32 1-1

Z
Z-Buffering

With DirectX 2-40
With OpenGL 2-40

2D Capabilities 2-42
2D Sprites 2-31
3D Pipelien

Scan Converter 2-11
3D Pipeline

Color Calculator/Depth Test 2-11
Setup Engine 2-11
Texture Pipeline 2-11

3D pipeline
Implementation 2-6

3D pipeline unit 2-8



United States and Canada
Intel Corporation
Robert Noyce Building
2200 Mission College Boulevard
P.O. Box 58119
Santa Clara, CA 95052-8119
USA
Phone: (800) 628-8686

Europe
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon
Wiltshire SN3 1RJ
UK

Phone:
England (44) 1793 403 000
Germany (49) 89 99143 0
France (33) 1 4571 7171
Italy (39) 2 575 441
Israel (972) 2 589 7111
Netherlands (31) 10 286 6111
Sweden (46) 8 705 5600

Asia Pacific 
Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway, Central
Hong Kong, SAR
Phone: (852) 2844 4555

Japan
Intel Kabushiki Kaisha
P.O. Box 115 Tsukuba-gakuen
5-6 Tokodai, Tsukuba-shi
Ibaraki-ken 305
Japan
Phone: (81) 298 47 8522

South America
Intel Semicondutores do Brazil 
Rua Florida 1703-2 and CJ22
CEP 04565-001 Sao Paulo-SP
Brazil
Phone: (55) 11 5505 2296

For More Information
To learn more about Intel Corporation, visit our site 
on the World Wide Web at www.intel.com

Intel around the world


	Introduction 1
	1.1 About This Manual
	1.2 Intel740™ Graphics Accelerator Features
	Table 1�1. Intel740™ Graphics Accelerator Feature Summary

	1.3 Related Documents

	Hardware Capabilities 2
	Figure 2�1. System Block Diagram with Intel740™ Graphics Accelerator
	2.1 Architectural Overview
	2.1.1 3D Engine
	Figure 2�2. The Intel740™ Graphics Accelerator Architectural Interfaces
	Figure 2�3. The Intel740™Graphics Accelerator Implementation of Sideband Addressing
	Figure 2�4. Batch Processing on the Intel740™ Graphics Accelerator—A Conceptual View
	Figure 2�5. The Intel740™ Graphics Accelerator’s Ability to Execute Textures Directly From AGP Me...
	Figure 2�6. The Intel740™ Graphics Accelerator Functioning as Two Memory Controllers

	2.1.2 2D Engine
	2.1.3 Video Module Interface (VMI)
	2.1.4 Digital TV Out
	2.1.5 Display

	2.2 3D Capabilities
	2.2.1 3D Pipeline
	Figure 2�7. 3D Pipeline for DirectX
	Figure 2�8. 3D Pipeline for OpenGL

	2.2.2 3D Primitives
	Figure 2�9. Triangle as the Intel740™ Graphics Accelerator Driver Sees It

	2.2.3 Data Formats
	Table 2�1. Data Formats

	2.2.4 Surface Color Attributes
	2.2.4.1 Fogging
	Figure 2�10. Effects of Fogging Off vs Fogging On

	2.2.4.2 Specular Highlighting
	Figure 2�11. Effects of Using Specular Highlighting

	2.2.4.3 Alpha Blending
	Figure 2�12. Effects of Using Alpha Blending
	Table 2�2. Alpha Blend Functions for OpenGL & DirectX

	2.2.4.4 Alpha Testing
	2.2.4.5 Color Dithering
	2.2.4.6 Shading
	Figure 2�13. Effects of Flat Shading vs. Gouraud Shading

	2.2.4.7 Stippled Pattern

	2.2.5 Texture Map Attributes
	Figure 2�14. Getting 1.3 Gbytes of Concurrent Throughput with the Intel740™ Graphics Accelerator
	2.2.5.1 Texture Map Formats
	2.2.5.2 Texture Map Blending
	Table 2�3. DirectX Texture Map Blending Functions
	Table 2�4. OpenGL Texture Blend Modes and Equations

	2.2.5.3 Texture Map Color Keying
	Figure 2�15. A Color Keyed Splash

	2.2.5.4 Texture Wrapping Formats
	Table 2�5. Supported DirectX Texture Wrap Formats
	Figure 2�16. Texture Clamp Mode
	Table 2�6. Supported OpenGL Texture Wrap Formats

	2.2.5.5 Texture Map Filtering
	Figure 2�17. Point Filtering VS. Bilinear Filtering

	2.2.5.6 Texture Mipmapping
	Figure 2�18. An Example of Five Levels of Mipmapped Texture


	2.2.6 Drawing Formats
	2.2.7 Buffers
	Table 2�7. Pixel Formats and Buffers
	2.2.7.1 Double and Triple Buffering
	2.2.7.2 Z-Buffering
	Figure 2�19. Z-Buffering Off vs. Z-Buffering On


	2.2.8 Antialiasing
	Figure 2�20. Effects of Antialiasing

	2.2.9 Back Face Culling

	2.3 2D Capabilities
	2.3.1 BitBLT Engine
	2.3.1.1 Fixed BitBLT
	Figure 2�21. BLT Engine Block Diagram and Data Paths

	2.3.1.2 Stretch BLT Engine
	2.3.1.3 Color Expansion

	2.3.2 Hardware Cursor
	2.3.3 Video Display Resolutions
	Table 2�8. Display Modes Supported


	2.4 Video, VBI, and Intercast Capabilities
	2.4.1 Video Capture Port
	2.4.1.1 Overview
	Figure 2�22. Intel740™ Graphics Accelerator Video Capture System Diagram

	2.4.1.2 Video Capture Programming

	2.4.2 Video Overlay
	2.4.2.1 Overview
	2.4.2.2 Field Based Content

	2.4.3 VBI and Intercast
	2.4.3.1 Overview


	2.5 DVD Capabilities
	2.5.1 Overview
	Figure 2�23. Data Flow for DVD Playback

	2.5.2 Hardware DVD/MPEG-2 Movie Playback
	2.5.2.1 Software Considerations
	2.5.2.2 Creating a VPE Port


	2.6 TV Out Interface
	2.6.1 Overview
	Figure 2�24. Windows* TV Output Control Software Structure

	2.6.2 Using TV Out with Copy Protection
	2.6.2.1 Enabling Copy Protection Using SetMovieMode
	2.6.2.2 Enabling Copy Protection Using VIDEOPARAMETERS (Win98)


	2.7 2X AGP Interface
	2.7.1 AGP Primer
	Figure 2�25. Intel740™ Graphics Accelerator Connects to System Memory Over AGP

	2.7.2 AGP Software Architecture
	Figure 2�26. New Services in Windows Work with DirectDraw to Support AGP Applications


	2.8 BIOS Interface
	2.9 Local Memory

	Programming Environment 3
	3.1 OpenGL Programming Environment
	3.2 OpenGL Drivers
	3.2.1 MCD
	Figure 3�1. MCD Architecture

	3.2.2 ICD
	Figure 3�2. ICD Architecture
	3.2.2.1 Buffer Allocation

	3.2.3 Geometry Operations
	Table 3�1. Characteristics of Graphics Operations (Sheet 2 of 2)


	3.3 DirectX Programming Environment
	Figure 3�3. Intel740™ Graphics Accelerator Software Architecture

	3.4 Windows Display Driver
	3.4.1 Mini Display Driver
	3.4.1.1 Structures Exported to GDI
	Table 3�2. Device Technology—dpTechnology (Sheet 2 of 2)



	3.5 DirectDraw Display Driver Interface
	3.5.1 Directdraw Hal Capabilities
	Table 3�3. dwCaps—Specifies Driver-Specific Capabilities �
	Table 3�4. dwCaps2—Specifies More Driver-Specific Capabilities
	Table 3�5. dwCKeyCaps—Color Key Capabilities �
	Table 3�6. dwFXCaps—Specifies Driver-Specific Stretching and Effects Capabilities �
	Table 3�7. dwPalCaps—Specifies Palette Capabilities �
	Table 3�8. ddsCaps.dwCaps—Specifies The Capabilities Of The Surface �


	3.6 Direct3D Interface
	3.6.1 Supported Direct3D Capabilities
	Table 3�9. General Device Capabilities �
	Table 3�10. Texture Capabilities
	Table 3�11. Primitive Capabilities Supported (Sheet 3 of 3)

	3.6.2 Supported RenderState
	Table 3�12. DIRECT3D RenderState Hardware / Software Support (Sheet 3 of 3)

	3.6.3 Supported RenderPrimitives
	Table 3�13. DIRECT3D RenderPrimitive Hardware / Software Support


	3.7 Video Interface
	Table 3�14. VfW Capture Driver Capability �

	3.8 GDI Escape Interface
	Table 3�15. Functionality Control
	Table 3�16. Device Driver Debugging Control


	Performance Considerations 4
	4.1 Performance Strategies And Measurements
	4.1.1 Intel740™ Graphics Accelerator Performance Capabilities
	4.1.2 Using CPU/Intel740™ Graphics Accelerator Concurrency
	Figure 4�1. Intel740™ Graphics Accelerator/CPU Usage Model
	Figure 4�2. Improper Usage Model

	4.1.3 Performance Test Results
	4.1.3.1 Raster Speed Test Method
	Figure 4�3. RasM Intel740™ Graphics Accelerator/CPU Usage Model
	Figure 4�4. RasM Pseudo-Code
	Table 4�1. Result Summary
	Table 4�2. Symbol Key
	Figure 4�5. Basic Feature Sweeps
	Figure 4�6. Advanced Feature Sweeps
	Figure 4�7. Full Feature Sweeps

	4.1.3.2 Implications and Analysis
	Figure 4�8. Performance vs. Percent Z Occlusion


	4.1.4 Special Performance Considerations
	4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers
	Figure 4�9. Performance of DrawPrimitive vs. Execute Buffer

	4.1.4.2 OpenGL Display Lists vs. Vertex Buffers
	Figure 4�10. Performance of Display Lists vs. Vertex Buffers

	4.1.4.3 Triangle Packet Size
	Figure 4�11. D3D Performance vs. Buffer Size (Duty Cycle)
	Figure 4�12. OpenGL Performance vs. Buffer Size (Duty Cycle)
	Figure 4�13. Performance vs. Total Packet Size

	4.1.4.4 Texture Sizes
	Figure 4�14. Performance vs. Texture Size

	4.1.4.5 Palette Changes
	Figure 4�15. Performance vs. Palette Changes

	4.1.4.6 Untiled Textures for Procedural Texture Animation
	Figure 4�16. Performance with Untiled Textures

	4.1.4.7 High Performance Transparency
	Figure 4�17. Performance vs. Transparency

	4.1.4.8 Screen Resolutions
	Figure 4�18. Performance vs. Screen Resolution


	4.1.5 Budgeting CPU Clock Cycles
	Table 4�3. CPU Cycle Targets

	4.1.6 Video Performance
	Figure 4�19. Available Memory Bandwidth on a Pentium® II Processor System
	Table 4�4. Typical Video/Data Capture Applications
	Table 4�5. CPU Usage for Some Typical Applications


	4.2 Other Programming Tips
	4.2.1 Texture and Surface Effects
	4.2.1.1 Texture Formats
	4.2.1.2 Texture Sizes
	4.2.1.3 Texture Storage
	4.2.1.4 Animated Texture Effects
	4.2.1.5 Multi-pass Texture Effects

	4.2.2 Software Strategies
	4.2.2.1 Using Z-Buffering
	4.2.2.2 Using Triple-Buffering
	4.2.2.3 Using Antialiasing
	4.2.2.4 Minimizing State Transitions
	4.2.2.5 Dynamic AGP Buffer Placement
	Figure 4�20. Dynamic AGP Buffer Placement

	4.2.2.6 Using Texture Palettes
	4.2.2.7 Using Mipmapping
	4.2.2.8 Optimal Artist Geometry Design
	4.2.2.9 Optimal Artist Texture Design for Trilinear Filtering
	4.2.2.10 Using Color/chroma Keying on Top of Alpha Blended Textures
	4.2.2.11 Avoiding Stippling Errors
	4.2.2.12 Avoiding Flipping Errors
	4.2.2.13 Texture Sorting Is Not Required


	4.3 OpenGL Programming Implementation
	4.3.1 OpenGL Feature Classification
	4.3.2 Feature Overview
	Table 4�6. Rating OpenGL Features (Sheet 2 of 2)

	4.3.3 OpenGL Operation
	4.3.3.1 Begin/End Paradigm
	4.3.3.2 Vertex Specification
	4.3.3.3 Vertex Arrays
	4.3.3.4 Rectangles
	4.3.3.5 Coordinate Transformation
	4.3.3.6 Clipping
	4.3.3.7 Current Raster Position
	4.3.3.8 Colors and Coloring

	4.3.4 Rasterization
	4.3.4.1 Antialiasing
	4.3.4.2 Points
	4.3.4.3 Line Segments
	4.3.4.4 Polygons
	4.3.4.5 Pixel Rectangles
	4.3.4.6 Bitmaps
	4.3.4.7 Texturing
	4.3.4.8 Fog
	4.3.4.9 Antialiasing Application

	4.3.5 Fragments And The Frame Buffer
	4.3.5.1 Per-Fragment Operations
	Table 4�7. Included and Excluded Pre-Fragment Operations

	4.3.5.2 Whole Framebuffer Operations
	4.3.5.3 Drawing, Reading, and Copying Pixels

	4.3.6 Special Functions
	4.3.7 State And State Requests
	4.3.8 GL Command Summary
	Table 4�8. Command Performance Ratings (Sheet 5 of 5)



	Glossary
	Index
	Contact Information

