

Compilers

About Me

● IRC: tstellar
● GSOC student while at the University of

Oregon
● Added features and optimization to the r300

compiler
● I am currently employed by AMD.

Summary

● OpenCL compiler stack
– What it looks like

– How to integrate with Mesa

● Sharing code between OpenCL and GLSL
compilers

● What I have been working on lately

Mesa Compiler Goals

● Share code
● Compiler infrastructure for drivers
● Comprehensive test suites

OpenCL compiler

● LLVM Compiler Infrastructure
– Clang frontend (C, C++,

OpenCL)

– LLVM Assembly

– Optimization library

– Target specific code generators
(X86, PPC, ARM, etc.)

– JIT execution

Clang

LLVM
Backend

LLVM ASM

OpenCL C

Machine Code

LLVM Backend

● TargetMachine
– Registers definitions

● Registers and sub-registers
● Register Classes (f32, i32, v4f32, v4i32, etc.)

– Instructions definitions
● Pattern matching
● Assembly string
● HW encoding

Register Definitions

def R1x : R600Reg<1,
“R1.x”>
def R1y : R600Reg<2,
“R1.y”>
def R1z : R600Reg<3,
“R1.z”>
def R1w : R600Reg<4,
“R1.w”>

def R1xyzw :
R600RegWithSubReg<5
, "R1.xyzw",

[R1.x, R1.y, R1.z,
R1.w]>;

def GPRf32 :
RegisterClass<"R600",
[f32], 32,

[R1x, R1y, R1z,
R1w]>;

def GPRv4f32 :
RegisterClass<"R600",
[v4f32], 128,

[R1xyzw]>;

Instruction Definitions

def MULLIT : R600Instruction <

 (outs GPRv4f32:$dst),

 (ins GPRf32:$src0, GPRf32:$src1,
GPRf32:$src2),

 "MULLIT $dst, $src0, $src1",

 [(set GPRv4f32:$dst, (int_R600_mullit
GPRf32:$src0, GPRf32:$src1,
GPRf32:$src2))]

>;

Integrating OpenCL compiler with
Mesa

Classic Intel
Drivers

TGSI

GLSL

GLSL
Frontend

Gallium
Driver

Clang

LLVM
Backend

LLVM ASM

OpenCL C

Machine Code Machine Code Machine Code

GLSL IR

●Ideas:
● Integrate LLVM Backend

into Gallium driver

● Write an LLVM backend
that generates TGSI

● Other ideas??

Ideas

● Integrating LLVM backend into Gallium drivers
– Pros:

● Easier to write GPU specific optimizations
● A better trivial shader compiler

– Cons:
● Potential for 2 code emitters per driver
● Might need to use LLVM for shaders
● Each driver needs to implement an LLVM backend

Ideas

● LLVM -> TGSI Conversion
– Pros:

● We can reuse current code emitters
● Only one LLVM backend is needed (TGSI)

– Cons:
● We need to extend TGSI to support OpenCL

features (Pointers, Integers, Vector Types)
● We have to roll our own compiler infrastructure

for backends

Can we combine GLSL and OpenCL
compilers?

● One backend for GLSL and OpenCL with LLVM
● Why should we do this?

– Code sharing

– More testing

– LLVM Compiler Infrastructure

● How can we do this?
– TGSI -> LLVM converter

TGSI->LLVM converter

● Already exists in Gallium llvmpipe
● We can pull code out of llvmpipe for a TGSI-

>LLVM converter
● Llvmpipe

– Two ways to convert TGSI->LLVM:

– Split vector int scalar elements

– Pass vector types to LLVM (untested)

Challenges in using LLVM for shaders

● LLVM IR is designed for “traditional” hardware
– However, infrastructure makes it easy to write

own optimization passes

● We need to extend the instruction set using
intrinsics

● Swizzles / Writemasks
– We can implement these with intrinsics

– We can also use creative instruction definitions

● Input / Output registers
– We need to add instructions to emulate GPU

operations

What I have been working on

● TGSI -> LLVM Converter
● LLVM backend for r600g

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

