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Abstract

Modernscientifictechnologyisprovidinganew classoflarge-scalesimultaneous
inferenceproblems,withhundredsorthousandsofhypothesisteststoconsideratthe
sametime.Microarraysepitomizethistypeoftechnologybutsimilarproblemsarise
inproteomics,timeofflightspectroscopy,flow cytometry,FMRIimaging,andmassive
socialsciencesurveys.Thispaperuseslocalfalsediscoveryratemethodstocarry
outsizeandpowercalculationsonlarge-scaledatasets.AnempiricalBayesapproach
allowsthefdranalysistoproceedfrom aminimum offrequentistorBayesianmodeling
assumptions.Microarrayandsimulateddatasetsareusedtoillustrateaconvenient
estimationmethodologywhoseaccuracycanbecalculatedinclosedform.A crucial
partofthemethodologyisanfdrassessmentof“thinnedcounts”,whatthehistogram
ofteststatisticswouldlooklikeforjustthenon-nullcases.



1.Introduction

Large-scale simultaneous hypothesis testingproblems,with hundreds or thousands of
cases considered together,have become afact ofcurrent-day statisticalpractice.Microarray
methodology spearheaded the production oflarge-scale datasets,but other “high through-
put”technologies are emerging,includingtime offlight spectroscopy,proteomic devices,flow
cytometry,and functionalMagnetic Resonance Imaging.

Benjaminiand Hochberg’s seminal(1995) paper introduced False Discovery Rates (Fdr),
aparticularly usefulnew approach tosimultaneous testing.Fdr theory relies on p-values,
that is on nullhypothesis tailareas,and as such operates as an extension oftraditional
frequentist hypothesis testingtosimultaneous inference,whether involvingjust afew cases
or severalthousand.Large-scale situations,however,permit another approach:empirical
Bayes methods can bringBayesian ideas tobear without the need for strongBayesian or
frequentist assumptions.Localfalse discovery rates (fdr),the subject ofthis paper,use
empiricalBayes techniques toprovide both size and power calculations for large-scale studies.

The datafor one such study is summarized in Figure 1.Eight microarrays,four from cells
ofHIV infected subjects and four from uninfected subjects,have each measured expression
levels for the same N= 7680genes.Each gene yields atwo-sample t-statistic ticomparing
the infected versus the uninfected subjects,which is then transformed toaz-value,

zi= Φ−1 (F6(ti)),(1.1)

where F6is the cumulative distribution function (cdf) ofastandard tvariable with 6de-
grees offreedom,and Φ is the standard normalcdf.Theoretically zishould have aN(0,1)
distribution ifgene iproduces identically distributed normalexpressions for infected and
uninfected cells.

The histogram ofz-values shown in Figure 1looks promising:the normal-shaped central
peak presumably charts the large majority of“null”genes,those behavingsimilarly for
infected and uninfected cells,while the longtails revealsome interesting“non-null”genes,
the kind the study,was intended todetect;fdr methodology,described in Section 5,has
been used toprovide thinned counts,an estimate ofwhat ahistogram ofonly the non-null
z-values would look like.

Figure 2shows the estimated localfalse discovery rate curve fdr(z) based on empirical
Bayes methodology discussed in Sections 3and 4;fdr(z),the conditionalprobability ofacase
beingnullgiven z,declines from one near z= 0tozeroat the extremes.There are 186genes
havingfdr(z) ≤0.2,areasonable cutoff point discussed in Section 2,and we might report
these 186tothe investigators as interestingcandidates for further study.Other methods,
such as Benjaminiand Hochberg’s Fdr procedure with cutoff q= 0.1,yield similar results.

Figure 2alsodisplays the thinned counts from Figure 1,estimatingthe histogram of
non-nullgenes.Strikingly,amajority ofthe non-nullcases lie wellwithin the 0.2fdr cutoff
limits.However ifwe try toreport more ofthe non-nullcases then false discovery rates
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Figure1:Histogram of 7680 z-values from an HIVmicroarray experiment. Short vertical
bars are estimated “thinned counts” of non-null genes, as explained in Section 5. (Extreme
values have been truncated, giving small bars at each end.) Data from van’t Wout et al.
(2003), discussed in Gottardo et al. (2004).

can grow unacceptably large,say tofdr(z) = 0.5,where the investigator would have a50%
chance ofpursuingfalse leads.

In other words the HIV study is underpowered.Section 5describes power diagnostics
for large-scale testingsituations,based on fdr calculations ofthe type shown Figure 2.

Section 6discusses the non-nulldistribution ofz-values such as (1.1).It suggests that
the underlyingdensities for histograms like Figure 1’s should be smooth normalmixtures,
smoothness beingan important assumption ofour fdr methodology.

Ideally,abigdataset like that ofthe HIV study should require very little paramet-
ric modeling,the dataitselfprovidingthe framework for its own analysis.This idealis
approached by the fdr calculations for Figures 1and 2,which depend on asimple model,
presented in Section 2,requiringfew assumptions.Section 7examines this modelin terms
ofamore structured formulation,clarifyingits limitations in regard tobias and the choice
ofnullhypothesis.

Focusingon z-values,rather than workingwithin the full7680×8datamatrix for
the HIV study,greatly reduces the need for modelingassumptions.There willcertainly
be situations where workinginside the matrix,as in Newton et al.(2004),Gottardoet
al.(2004),and Kerr,Martin,and Churchill(2000),yields more information.Usingsuch
methods requires more carefulattention tothe details ofthe individualdataset than our
relatively crude z-value approach.A key assumption not made here is independence across
the columns ofthe datamatrix (e.g.independence across microarrays) which underlies the
use ofpermutation or bootstrap methods for nullhypothesis testingdistributions.In fact
there turns out tobe curious dependences across the HIV matrix,as mentioned in Section
3.2,similar tothe correlation effects in the microarray example ofEfron (2004);column-wise
independence seems tobe adangerous assumption for microarray studies.

A substantialmicroarray statistics literature has developed in the past few years,much
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Figure2:Heavy curve is fdr(z), local false discovery rate as estimated by locfdr algorithm
described in Section 3; fdr(z) = 0.2at z= −2.34and 2.17. Vertical bars are thinned counts
from Figure 1, now multiplied by 0.01 and plotted negatively.

ofit focused on the controloffrequentist Type Ierrors,see for example Dudoit,van der
Laan and Pollard (2004),and the review article by Dudoit,Shaffer,and Boldruck (2003).
Bayes and empiricalBayes methods have alsobeen advocated,as in Kendziorskiet al.(2003),
Johnstone and Silverman (2004),and Newton et al.(2004),while Benjaminiand Hochberg’s
Fdr theory is increasingly influential,see Storey et al.(2004),and Genovese and Wasserman
(2004).Localfdr methods,which this article argues can play ausefulrole,were introduced
in Efron et al.(2001);severalreferences are listed at the end ofSection 3.1.

2.FalseDiscovery Rates

Localfalse discovery rates,Efron et al.(2001),Efron and Tibshirani(2002),are a
variant ofBenjaminiand Hochberg’s (1995) “tailarea”false discovery rates.This section
relates the twoideas,reviews afew basic properties,and presents some generalguidelines for
interpretingfdr’s.The development here is theoretical,with practicalestimation procedures
deferred toSection 3.

Suppose we have Nnullhypotheses toconsider simultaneously,each with its own test
statistic,

Nullhypothesis :H1,H2,...,Hi,...,HN

Test statistic :z1,z2,...,zi,...,zN

(2.1)

Nmust be large for localfdr calculations,at least in the hundreds,but the zineed not be
independent.A simple Bayesian model,Lee et al.(2000),Newton et al.(2001),Efron et al.
(2001),underlies the theory:we assume that the Ncases are divided intotwoclasses,null
or non-null,occurringwith prior probabilities p0or p1= 1−p0,and with the density oftest
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statistic zdependingupon its class,

p0= Pr{null} f0(z) density ifnull

p1= Pr{non-null} f1(z) density ifnon-null.
(2.2)

In context (1.1) it is naturaltotake f0(z) tobe the standard N(0,1) density –but see Section
3.2–and f1(z) some longer-tailed density,perhaps representingamixture ofalternative
possibilities;the empiricalestimation theory ofSection 3does not require specification of
f1(z).Practicalapplications oflarge-scale testingusually assume alarge p0value,say

p0≥0.9, (2.3)

the goalbeingtoidentify arelatively smallset ofinterestingnon-nullcases.

Define the null subdensity
f+

0(z) = p0f0(z) (2.4)

and the mixture density
f(z) = p 0f0(z) + p1f1(z). (2.5)

The Bayes posterior probability that acase is nullgiven z,by definition the localfalse
discovery rate,is

fdr(z) ≡Pr{null|z} = p 0f0(z)/f(z)

= f+
0(z)/f(z).

(2.6)

The Benjamini-Hochbergfalse discovery rate theory relies on tailareas rather than
densities.LettingF0(z) and F1(z) be the cdf’s correspondingtof0(z) and f1(z) in (2.2),
define F+

0(z) = p0F0(z) and F(z) = p0F0(z) + p1F1(z).Then the posterior probability ofa
case beingnullgiven that its z-value “Z”is less than some value zis

Fdr(z) ≡Pr{null|Z≤z} = F +
0(z)/F(z).(2.7)

(It is notationally convenient toconsider events Z≤zbut we could just as wellconsider tail
areas tothe right,two-tailed events,etc.) Figure 3illustrates the geometricalrelationship
between Fdr and fdr.

Benjaminiand Hochberg’s FDR controlrule depends on an estimated version of(2.6)
where Fis replaced by the empiricalcdf.Storey (2002) and Efron and Tibshirani(2002)
discuss the connection ofthe frequentist FDR procedure with Bayesian form (2.7).Fdr(z)
corresponds toStorey’s “q-value”,the value ofthe tailareafalse discovery rate attained at
agiven observed value Z= z.

Fdr and fdr are analytically related by

Fdr(z) =

z

−∞
fdr(Z)f(Z)dZ/

z

−∞
f(Z)dZ

= Ef{fdr(Z)|Z≤z},
(2.8)
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Figure3:Geometrical relationship of Fdr to fdr; heavy curve plots F+
0(z) versus F(z);

fdr(z) is slope of tangent, Fdr(z) slope of secant.

“Ef”indicatingexpectations with respect tof(z),Efron and Tibshirani(2002).That is,
Fdr(z) is the average offdr(Z) for Z≤z;Fdr(z) willbe less than fdr(z) in the usualsituation
where fdr(z) decreases as |z|gets large.For example fdr(−2.34) = 0.20in Figure 2while
Fdr(−2.34) = 0.12.Ifthe cdf’s F0(z) and F1(z) are Lehmann alternatives

F1(z) = F0(z) α,[α<1], (2.9)

it is straightforward toshow that

log


fdr(z)

1−fdr(z)


= log


Fdr(z)

1−Fdr(z)


+ log


1

α


,(2.10)

giving
fdr(z)=̇ Fdr(z)/α (2.11)

for smallvalues ofFdr.The HIV dataofFigure 1has αroughly 1/2in the left tailand 1/3
in the right.

The localnature offdr(z) is an advantage in interpretingresults for individualcases.
For example,agene with z= 2.0in the HIV study has an estimated fdr of0.30while the
corresponding(right-sided) tail-areaFdr,the q-value,is 0.12.Quotingjust this last number
gives an overoptimistic impression ofthe gene’s significance.In practice the methods can
be combined,usingthe Benjamini-Hochbergalgorithm toidentify non-nullcases,say with
q= 0.10,but alsoprovidingindividualfdr values for those cases.

The literature has not reached consensus on astandard choice ofqfor Benjamini-
Hochbergtesting,the equivalent of.05for single tests,but Bayesian calculations offer some
insight.The cutoff threshold fdr ≤0.20used in Figure 2yields posterior odds ratio

Pr{non-null|z}/Pr{null|z} = (1−fdr(z))/fdr(z)

= p1f1(z)/p 0f0(z) ≥0.8/0.2= 4.
(2.12)
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Ifwe assume prior odds ratiop1/p 0≤0.1/0.9as in (2.3),then (2.12) corresponds toBayes
factor

f1(z)/f 0(z) ≥36 (2.13)

in favor ofnon-null.

This threshold requires amuch stronger levelofevidence against the nullhypothesis
then in standard one-at-a-time testing.For instance suppose we observe x∼N(µ,1) and
wish totest H0:µ= 0vs µ= 2.80,afamiliar scenariofor power calculations since
rejectingH0for x≥1.96yields two-sided size 0.05and power 0.80.Here the critical
Bayes factor is only f2.80 (1.96)/f0(1.96) = 4.80.(A value closer to3is suggested by the
more carefulconsiderations in Efron and Gous (2001).) We might justify (2.13) as being
conservative in guardingagainst multiple testingfallacies.More pragmatically,increasingthe
fdr threshold much above 0.20can deliver unacceptably high proportions offalse discoveries
tothe investigators.The 0.20threshold,used in the remainder ofthe paper,corresponds to
q-values between 0.05and 0.15for reasonable choices ofαin (2.11);such q-value thresholds
can be interpreted as reflectingaconservative Bayes factor for Fdr interpretation.

Any choice ofthreshold is liable toleave investigators complainingthat the statisticians’
list ofnon-nullcases omits some oftheir a priori favorites.Conveyingthe fulllist ofvalues
fdr(zi),not just those for cases judged non-null,allows investigators toemploy their own
prior opinions on interpretingsignificance.This is particularly important for low-powered
situations like the HIV study,where luck plays abigrole in any one case’s results,but it is
the counselofperfection,and most investigators willrequire some sort ofreduced list.

False discovery rates,both fdr and Fdr,depend on only the marginaldistribution of
the zvalues,f(z) or F(z).This has both good and bad consequences:On the good side,
independence is not required ofthe zi’s in (2.1),since allthat is needed is areasonable
estimate oftheir marginaldistribution.Less happily,results like (2.6) or (2.7) are really
“one-at-a-time”Bayes inferences,that may be quite different than the (usually unknowable)
posterior probability ofHigiven the entire N-vector z.

3.Estimatingfdr

The heavy curve in Figure 2is an estimate ofthe localfalse discovery rate fdr(z) for
the HIV study.This section concerns the estimate’s empiricalBayes methodology,including
the question ofchoosingan appropriate nullhypothesis.Accuracy ofthe estimation pro-
cedure is taken up in Section 4.(This methodology is available through algorithm locfdr,
Comprehensive R Archive Network,http://cran.r-project.org.) Estimatingthe numerator
and denominator offdr(z) = f+

0(z)/f(z) willbe discussed separately.

3.1Estimating the Mixture Density f(z)

Nonparametric density estimation has areputation for difficulty,well-deserved in general
situations.However there are good theoreticalreasons for believingthat z-value distributions
are quite smooth,see Section 6.Our tactic here is toestimate the mixture density f(z),
the denominator offdr(z) in (2.6),with smooth but flexible parametric models.Section 4
discusses the accuracy ofthis approach.

Lindsey’s method,as discussed in Section 2ofEfron and Tibshirani(1996),permits effi-
cient and flexible parametric density estimation usingstandard Poisson regression software.
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Suppose the Nz-values have been binned,givingbin counts y1,y2,...yKsummingtoN.
The histogram in Figure 2,used K= 79bins,each ofwidth ∆ = 0.1.Lindsey’s method
takes the yktobe independent Poisson counts,

yk
ind ∼Po(ν k) k= 1,2,...,K,(3.1)

with νkproportioned todensity f(z) at midpoint “z(k) ”ofthe kth bin,approximately

νk= N∆f(z(k) ).(3.2)

Modelinglog(νk) as apth degree polynomialfunction ofz(k) makes (3.1),(3.2) astandard
Poisson generallinear model(GLM).The choice p= 7,for example,effectively amounts to
estimatingf(z) by maximum likelihood within the seven-parameter exponentialfamily

f(z) = exp


7

j=0

βjz
j


(3.3)

(with (β1,β2,...,β7) determiningβ0from the requirement that f(z) integrate toone.) The

denominator offdr(z) in Figure 2actually took log{f(z)} tobe anaturalspline function
with seven degrees offreedom,but (3.3) gives nearly the same answers;standard Poisson
deviance analysis showed areasonably good fit,while doublingor halvingthe bin width ∆
had little effect.

Dependence amongthe zi’s causes overdispersion and dependence for the yk’s in (3.1),
but has little effect on (3.2).Lindsey’s method remains nearly unbiased,but,as discussed
in Section 4,the usualGLM accuracy estimates are liable tobe overoptimistic.

A variety ofother localfdr estimation methods have been suggested:usingmore specific
parametric models such as normalmixtures,see Pan et al.(2003),Pounds and Morris (2003),
Allison et al.(2002),or Heller and Qin (2003);isotonic regression,Broberg(2005);local
smoothing,Aubert et al.(2004);and hierarchicalBayes analyses,Liaoet al.(2004),Do
et al.(2004).Allseem toperform reasonably well.The Poisson GLM methodology of
this paper has the advantage ofeasy implementation with familiar software,and permits a
closed-form error analysis as shown in Section 4.Perhaps most usefully,it transfers density
estimation tothe more familiar realm ofregression theory.

3.2 Estimating f+
0(z)

The fdr numerator f+
0(z) = p0f0(z),(2.4),is more challengingtoestimate.We consider

twosituations:where the theoretical null f0(z) that would ordinarily be used for the indi-
vidualhypothesis testingproblems,e.g.f0(z) ∼N(0,1) in (1.1),is deemed satisfactory for
the simultaneous problem (2.1);and where it is unsatisfactory,and instead we must fit an
empirical null,as in Efron (2004).The HIV study falls intothe “unsatisfactory”category,
and we begin by usingit toillustrate empiricalestimation off+

0(z).

The heavy curve in Figure 4is logf(z),the logofthe estimated mixture density fit to

the HIV counts by Poisson regression.A quadratic curve,dashed,has been fit tologf(z)

around z= 0,and this is logf+
0(z),the empiricalestimate oflogf+

0.The three coefficients of
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the fitted quadratic determinef+
0(z) as ascaled normaldensity,in this case with p0= 0.917

andf0∼N(−0.10,0.74 2),

f0(z) = .917·ϕ −.10,.74 (z)


ϕδ,σ (z) = exp


−1

2


z−δ

σ

2√
2πσ 2


.(3.4)

The default option in locfdr fits aquadratic tologf(z) by ordinary least squares applied
over the centralone-third range ofthe z-values.

Figure4:Empirical estimation of the fdr numerator f+
0(z) = p0f0(z), HIVstudy. Heavy

curve is log of Poisson regression estimatef(z) for mixture density; dashed curve is log f+
0(z),

best-fitting quadratic to logf(z) near z= 0; estimates p 0= 0.917,f0∼N(−0.10,0.74 2).

Dotted curve is logf+
0for theoretical null.

The logic here is quite simple:we make the “zeroassumption”that the centralpeak
ofFigure 1’s histogram consists mainly ofnullcases,and choose p0,δand σin (3.4) to
quadratically approximate the histogram counts near z= 0.This same argument can be
applied with the theoreticalnull,givingthe dotted curve in Figure 4.Now f0(z) is assumed
tobe ϕ0,1 (z),the standard normal,soonly p0in f+

0= p0f0remains tobe estimated from
the centralhistogram counts.

The two-class model(2.2) is unidentifiable without restrictions on the form off0and
f1.Some version ofthe zeroassumption is necessary in the absence ofstrongparametric
assumptions,see for example Section 3ofStorey (2002).(Most ofthe FDR literature works
with p-values rather than z-values,pi= F6(ti) in (1.1),in which case the “zeroregion”occurs
near p= 1.) The zeroassumption is more believable when p0,the proportion ofnullcases,is
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near 1.Efron (2004),Section 5,shows that ifp0exceeds 0.90,the fittingmethod ofFigure 4
willhave negligible bias:although the 10% or less ofnon-nullcases might in fact contribute
some counts near z= 0,these cannot substantially affect the estimates ofδand σin (3.4).
The estimate ofp0is affected,beingupwardly biased as seen in Section 4and discussed in
Section 7.

The theoreticalnullhypothesis f0∼N(0,1) is untenable for the HIV data.Ifit were
valid then f(z) should be at least as wide as f0near z= 0,assumingthat non-nullz’s are
more dispersed than nulls.Instead fis substantially narrower,forcingf+

0= p0f0totake
the impossible value p0= 1.15in order tomatch the histogram heights near z= 0.

The examples in Efron (2004) gothe other way:in both ofthem the empiricalnullis
substantially wider than N(0,1).Various causes ofoverdispersion are suggested,including
hidden correlations and unobserved covariates.The underdispersion here is harder toexplain,
but can be traced toacorrelation ofexpression levels across microarrays:levels on the odd-
numbered arrays were positively correlated,as were levels amongthe even-numbered arrays,
the effect cuttingacross the Treatment-Controlclassification,apattern that swelled the
denominators ofthe t-statistics (1.1).

Misspecification ofthe nullhypothesis,which becomes visible in large-scale testingsit-
uations,undermines all forms of simultaneous inference,fdr,Fdr,Bonferroni,Family-Wise
Error Rate,or the sophisticated resamplingbased algorithms ofWestfalland Young(1993).
Usingan empiricalnullavoids the problem,but at asubstantialcost in estimation efficiency
as shown in Section 4.Other methods are sometimes available for empiricalnullestimation,
involving“housekeeper genes”(cases known a priori tobe null) and designed replications,
as in Lee et al.(2000).

More ambitiously,one may try tomodelthe fullerror structure ofthe originaldataset,
a7680×8matrix in the HIV study,usingfrequentist or Bayesian modelingas in Kerr and
Churchill(2001),or Newton et al.(2004).When feasible this is the idealapproach but it
can be an heroic undertakingin the complicated venue ofmicroarray analysis.The approach
here,relyingonly on the observed distribution ofthe z-values,trades some loss ofefficiency
for fewer assumptions and simple application.

Permutation and bootstrap nulldensity estimates play amajor role in the microarray
literature,as in Tusher et al.(2001) and Pollard and van der Laan (2003).These should
be considered as improved versions ofthe theoreticalnullrather than empiricalnulls.The
permutation nullfor the HIV data,permutingthe eight microarrays,is about N(0,.992).

Figure 4’s quadratic construction assumes that f0is normal,but uses the datatoestimate
its mean and variance instead ofacceptingthe theoreticalchoice N(0,1).Under some
circumstances we might wish togofurther,perhaps addingacubic term tologf0;locfdr
includes such an option,described in Section 7.

The basic false discovery rate ideais appealingly simple:19ofthe HIV z-values fell
intobin [2.0,2.1]in Figure 1,the smoothed estimate fromfbeing19.95;this compares with

expected number 4.70underf+
0,yieldingestimated localfalse discovery rate 4.70/19.95=

0.24.Ifwe report this bin as containinginterestingcases,then about one-fourth ofthem
willturn out tobe false discoveries.The question ofthe accuracy ofthis estimate is taken
up next.
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4.Estimation Accuracy

The algorithm described in 3.2produces an estimatefdr(z) for the localfdr from z-values
z1,z2,...,zN.How accurate is the estimate? This section derives adelta-method formula
for the standard error oflog(fdr(z)),under the assumption that the z’s are independent.
The formulais usefulfor understandingthe relative efficiency oflocalfdr compared totail
areaFdr,for assessingcomponents ofvariation caused by the threefdr components,p0,f0,
andf,and as alower bound and rough guide toestimation accuracy even ifindependence
is doubtful.

Before derivingthe formulawe report on asmallsimulation study where

zi
ind ∼N(µi,1) with


µi= 0probability 0.90

µi∼N(3,1) probability 0.10,
(4.1)

for i= 1,2,...,N.Three choices ofNwere used,N= 500,1500,4500,with 250simulations
each;for example the N= 1500choice had 1350µi’s equaling0and 150exactly following
N(3,1).The table reports standard deviations for log{fdr(z)},and for the tailareaquantity

log{ Fdr(z)},obtained by integratingthe parametric estimatesfand f+
0togetFandF+

0

for insertion into(2.7).

The most strikingfact in Table 1is the high cost ofusingan empiricalnull,afactor of3
increase in standard deviation in the criticalinterval[2.5,3.5]for zwhere fdr(z) ranges from

0.45down to0.05.The local-tailareacomparison is much less dramatic:fdr is about 50%
more variable thanFdr when usingthe theoreticalnull,but correspondingly less variable
with the empiricalnull.

In practicalterms alogstandard deviation less than 0.25willusually be tolerable,
correspondingtoestimates between 0.15and 0.25for atrue 0.20false discovery rate.All
the entries based on the theoreticalnullare less than 0.25,and this would hold for smaller
sample sizes as wellsince the standard deviations are approximately proportionalto1/

√
N.

The empiricalnullstandard deviations are toobigfor comfort at N= 500and only
borderline acceptable at N= 1500.Ofcourse we would prefer touse the theoreticalnull
but,unfortunately,it does not fit the datain situations like the HIV study or the examples of
Efron (2004),where inferences based on the theoreticalnullare dangerously misleading.One
tactic is toreduce empiricalvariability,at the risk ofbias,by usingless flexible parametric
models.Decreasingthe degrees offreedom for the naturalspline estimate off(z) from 7to

5reduced the standard deviations for log(fdr) by about one-third.

Table 1’s standard errors for the tailareafalse discovery ratesFdr(z),i.e.for q-values,

are based on the same parametric models asfdr(z).Replacingthe parametric cdfestimate
Fwith the nonparametric empiricalcdfF̄increased the standard errors in Table 1by
severalpercent,worseningan already bad situation for the empiricalnull.Benjaminiand
Hochberg’s (1995) Fdr-controllingalgorithm depends onF̄(as wellas independence);there

the high variability ofFdr does not affect the claimed controlrates,but does reduce the
power ofthe procedure toidentify non-nullcases.Power is considered here in Section 5.

Poisson GLM calculations provide convenient approximation formulas for stdev(logfdr)

and stdev(logFdr).Let Xbe the K×m structure matrix used for estimatinglog(f) in
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Section 3.1;Xhas m = 8,kth row (1,z(k) ,z2
(k) ,...,z7

(k) ) in model(3.3).Alsolet X0be the

K×m0matrix used todescribe log(f+
0) in Section 3.2:X0has kth row (1,z(k) ,z2

(k) ) for the

empiricalnull,m0= 3,while X0is the K×1matrix (1,1,...,1)for the theoreticalnull.

Locfdr fits logf+
0(z) tolog f(z) over acentralsubset ofK0bins,with index set say “i0”,

definingsubmatrices with rows in i0,

X= X[i0,]andX0= X0[i 0,] (4.2)

ofdimensions K0×m and K0×m0.Alsodefine inner product matrices

G= Xdiag(ν)Xand G0=X
0
X0,(4.3)

where diag(ν) is the K×Kdiagonalmatrix havingdiagonalelements νk= N∆f(z(k) ) as
in (3.2).

Finally,letindicate the K-vector with elementsk= logf(z(k) ),likewise+
0for vector

(logf+
0(z(k) )) and�fdr kfor log fdr(z(k) ).

Lemma 1The K×Kderivative matrix oflogfdr with respect tothe bin counts is


dfdr k

dy


= AG−1 X,(4.4)

where
A = X0

G−1
0

X
0
X−X. (4.5)

Proof A smallchange dyin the count vector (considered as continuous) produces change

din ,
d= X G−1 Xdy. (4.6)

Similarly if+
0= X0γ,γam 0-vector,is fit by least squares to= [i 0],we have

dγ= G−1
0

X
0d

and d+
0= X0

G−1
0

X
0d

.(4.7)

Both (4.6) and (4.7) are standard regression results.Then (4.6) gives d= d[i 0]=
XG−1 Xdy,yielding

d+
0= X0

G−1
0

X
0
XG−1 Xdy(4.8)

from (4.7).Finally,

d( �fdr) = d( +
0−) = (X 0

G−1
0

X
0
X−X) G−1 Xdy,(4.9)

verifying(4.4).�
The delta-method estimate ofcovariance for the K-vectorfdr is derived from the lemma

as
cov(�fdr) = (A G−1 X) cov(y)(A G−1 X)

= (AG−1 X)diag(ν)(A G−1 X),
(4.10)
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under Poisson assumptions (3.1),(3.2).SinceG= Xdiag(ν)Xthis reduces toarelatively
simple formula:

TheoremThe delta-method estimate ofcovariance for the vector oflogfdr(z(k) ) values is

cov�(fdr) = A G−1 A (4.11)

with A as in (4.5).

The entries “form”in Table 1are square roots ofdiagonalelements ofcov in (4.11),av-
eraged over the 250simulations.They produced reasonable estimates ofthe actualstandard
deviations oflog(fdr),especially for the empiricalnull.

A formulasimilar to(4.11) exists for the tailareafalse discovery rates�Fdr k= logFdr(z(k) ),

cov(�Fdr) = B G−1 B,(4.12)

B=S0X0
G−1

0
X

0
X− SX, (4.13)

where,for the case ofleft-tailFdr’s,S0andSare lower triangular matrices,

Sk=
f

Fk

andS0k=
f0

F0k

for ≤k.(4.14)

Comparisons of(4.11) with (4.12) in various situations confirm the generalstory ofTable

1: fdr is somewhat more variable thanFdr when usingtheoreticalnulls,the opposite being
true for empiricalnulls;however both methods are much more variable in the empiricalcase,
this effect dwarfingtheir comparative differences.(Empiricalnulls fare better in the power
calculations ofSection 5.)

Table 2displays means and standard deviations in simulation (4.1) for the three esti-
mated parameters ofthe empiricalnull,p0,δ,and σ,(3.4).Notice that p0is biased upward

from the simulation value p0= 0.90.This makes little difference tofdr(z) = p0
f0(z)/ f(z),

only increasingit by factor .0924/0.90= 1.03.(The power calculations ofSection 5are more
sensitive tobias.) Upward bias arises from the zeroassumption:the µ∼N(3,1) compo-
nent of(4.1) gives z∼N(3,2),resultingin asmallproportion ofnon-nullz-values near 0.
However the “bias”here reflects,at least partly,an ambiguity in what p0actually means,as
discussed in Section 7.

The variability in the estimated mean and standard deviation ofthe empiricalnull,δ
and σ,has an order ofmagnitude bigger effect than p0onfdr andFdr.The theoreticalnull
“knows”that (δ,σ) = (0,1),eliminatingthis variability and accountingfor its much smaller
standard deviations.

For fixed z,logfdr(z) is asum ofthree terms,

log fdr(z) = logp0+ logf0(z) −log f(z),(4.15)

allowingan exact apportionment ofvariability oflogfdr(z) tothe three components.For the
empiricalnullwith N= 1500and z= 2.9(the point where fdr(z) = 0.20in model(4.1)) the

12



THEORETICAL NULL EMPIRICAL NULL

zave( fdr) local(form) taillocal(form)tail

N= 500
1.5.95.08(.09) .09.06(.07) .17
2.0.77.15(.15) .08.17(.17) .27
2.5.45.17(.18) .08.28(.28) .40
3.0.17.15(.18) .10.45(.45) .56
3.5.05.18(.24) .12.68(.67) .72
4.0.01.20(.27) .16.89(.90) .90

N= 1500
1.5.96.05(.05) .05.04(.04) .10
2.0.76.08(.09) .05.09(.10) .15
2.5.44.09(.10) .05.16(.16) .23
3.0.16.08(.10) .06.25(.25) .32
3.5.04.10(.13) .07.38(.38) .42
4.0.01.11(.15) .10.50(.51) .52

N= 4500
1.5.96.03(.03) .03.02(.02) .05
2.0.77.05(.05) .03.05(.06) .08
2.5.43.06(.06) .03.09(.09) .12
3.0.16.05(.06) .03.14(.14) .18
3.5.04.06(.08) .04.21(.22) .23
4.0.01.06(.09) .05.28(.29) .29

Table1:Accuracy comparison for localand tailareafalse discovery rates,simulation
study (4.1);boldface stdev(logfdr),”local”,and stdev (logFdr),”tail”;”form”from formula

(4.11),delta-method approximation for stdev(logfdr).Second column shows averagefdr(z)
over the 250simulations.Simulations used naturalspline bases,seven degrees offreedom,
for estimatingf(z).

p0δσp
(theo)
0

N= 500:.924(.020) .021(.078) 1.018(.056) .917(.023)
N= 1500:.924(.011) .023(.046) 1.020(.031) .915(.015)

[form]:[.013][.049][.032][.015]
N= 4500:.922(.006) .024(.026) 1.017(.018) .915(.007)

Table2:Means and standard deviations (parentheses) for estimated empiricalnullpa-
rameters p0,δ,σ,(3.4);simulation study (4.1).Last column for theoreticalnullp0estimates.
Bracketed numbers from formulas (4.17)-(4.18),N= 1500.
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term logf0(z) is completely dominant:even knowingthe true value ofp0and f(z) would

reduce the standard deviation oflogfdr(z) by less than 1%.Employingatheoreticalnull

assumes away variability in logf0(z).Now the logf(z) term dominates variance:knowing

p0exactly reduces sd(logfdr(z)) by only 9%.

Standard error formulas are available for the trioofempiricalnullparameter estimates
θ≡(logp 0,δ,σ) obtained as in Figure 4.Defining

D =




1δσ 2+δ2

0σ 22δσ 2

00σ 3


 G−1

0
X

0
X(4.16)

in the notation of(4.2)-(4.9),the deltamethod covariance matrix is

cov(θ) = D G−1 D−




1
N

00
000
000


 ,(4.17)

this followingafter some calculation from dγin (4.7).Applied tothe simulations for N=
1500,(4.16) gave average standard errors “form”in Table 2,close tothe empiricalvalues;
variation was moderate across trials,coefficients ofvariation 13%,6%,and 8% respectively.

Simpler calculations provide adelta-method formulafor the variance oflog(p0) when
usingthe theoreticalnull,alsoshown in Table 2,

var{logp0} =x̄−1
0

G−1x̄
0−

1

N
,(4.18)

wherex̄0is the column-wise average ofX0.

For the HIV study,formula(4.17) yielded standard errors (.0087,.014,.014) for the

empiricalnullestimates (p0,δ,σ) = (0.917,−0.10,0.735).The objection here is that zi’s are
likely tobe correlated in amicroarray study,which would usually increase cov(y) above the
Poisson estimate diag(ν) used in (4.10).(“Correlated”refers tothe random errors in the

expression readings,not the fact that genes have related functions;iffor example zi
ind ∼N(µi,1)

as in (4.1),then it is easy toshow that cov(y) willbe smaller than diag(ν),even ifthe µi’s
for related genes tend toward similar values.)

Other methods ofmicroarray error assessment,not requiringindependence,may be
available:resamplingmicroarrays instead ofgenes (the latter givingalmost the same results
as (4.11) or (4.17));blockinggenes intogroups suspected tobe intracorrelated,and then
bootstrappingor jackknifingwith the groups as units;decomposingthe gene-microarray data
matrix intosome form ofrandom effects modelthat can then be resampled togive presum-
ably more dependable standard error estimates.The HIV study,with its smallnumber of
microarrays and uncertain correlation structure sprawlingacross both genes and arrays,is
not apromisingcandidate for these methods.The independence-based results ofthis section
are usefuleven when not definitive,servingas lower bounds on variability for microarray
analysis;locfdr returns standard errors from (4.11) alongwithfdr(z).
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5.PowerDiagnostics

The microarray statistics literature has focussed on controllingType Ierror,false rejec-
tion ofgenuinely nullcases.Dudoit et al.(2003) provides agood review.Localfdr methods
can alsohelp assess power,the probability ofrejectinggenuinely non-nullcases.This section
discusses power diagnostics based onfdr(z),showingfor example why the HIV study might
easily failtoidentify important genes.The emphasis here is on diagnostic statistics that are
dependable and simple tocalculate.

The Null subdensity

f+
1(z) = p1f1(z) = (1−fdr(z))f(z),(5.1)

the last equality followingfrom (2.5)-(2.6),plays acentralrole in power calculations.Inte-
gratingf+

1(z) yields the non-nullproportion p1= 1−p0.

p1=

∞

−∞
f+

1(z)dz=

∞

−∞
(1−fdr(z))f(z)dz,(5.2)

sothat

f1(z) = (1−fdr(z))f(z)/

∞

−∞
(1−fdr(z))f(z)dz.(5.3)

Power diagnostics are obtained by comparingf1(z) with fdr(z).We hope tosee f1(z) sup-
ported in regions havinglow values offdr(z).

The fdr methodology ofSection 3provides ausefulestimate off1.Returningtonotation
(3.1),(3.2),with counts ykin Kbins ofwidth ∆ and midpoints z(k) ,letfk=f(z(k) ) and
fdrk=fdr(z(k) ),wherefand fdr are obtained as in Section 3.Substitutinginto(5.2),(5.3)
gives estimates

p 1=
K

k=1

(1−fdrk)fk= 1−p0(5.4)

and
f1k≡f1(z(k) ) = (1−fdrk)fk/p 1,(5.5)

The latter is shown as the heavy curve in Figure 5.It is similar to“f1”in Figure 2ofEfron
et al.(2001) (though now based on amore stable estimation methodology),where the goal
was tochoose,from aclass ofmodified student tformulas,summary statistics “zi”that
maximized the number ofgenes havingfdr ≤0.10.Here the form ofthe summary statistic
is assumed given,as in (1.1),the goalbeingtoassess the power ofthe resultinganalysis.

Power diagnostics are obtained from the comparison off1(z) withfdr(z).The expecta-

tion offdr under f1,sayEfdr1,provides aparticularly simple diagnostic,

Efdr =
K

k=1

fdrk
f1k

=
K

k=1

fdrk(1−fdrk)fk/
K

k=1

(1−fdrk)fk,

(5.6)
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Figure5:Heavy curve proportional to non-null density estimatef1(z), (5.5), for HIV

study; light curve proportional tofdr(z). Points are thinned counts (5.9); a regression curve,
dotted, has been fit directly to the thinned counts on the right.

the expected non-null false discovery rate.A smallvalue ofEfdr1,suggests good power,with
atypicalnon-nullcase likely toshow up on alist ofinterestingcandidates for further study.

Table 3showsEfdr1’s behavior in simulation (4.1),N= 1500.The situation is seen tobe

favorable,withEfdr1,averagingonly 0.23or 0.29usingempiricalor theoreticalnulls (Section

7explains the disparity between the twoEfdr1values).Moreover the individualEfdr1values
were reasonably stable,havingstandard deviations only 0.04or 0.06.The empiricalnull
performs wellhere,in contrast toTable 3.

empiricalnulltheoreticalnull

p 1
Efdr1p 1

Efdr1

mean:0.76.232.085.285
stdev:.011.040.015.060

coeffvar:.14.17.18.21

Table3:Means,standard deviations,and coefficients ofvariation ofp1andEfdr1for
N= 1500case ofTables 1and 2.

On the other hand,Efdr1equals 0.45for the HIV study (by necessity usingthe empirical
null) soatypicalnon-nullgene is likely toreceive asubstantialfdr estimate,high enough to

exclude it from the list ofthose havingfdr ≤0.20.
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The Efdr1,computations can be carried out separately tothe left and right ofz= 0
by appropriately restrictingthe range ofsummation in the numerator and denominator of
(5.6).DoingsogivesEfdrleft = 0.51andEfdrright = 0.35for the HIV data.This says that it
willbe particularly difficult todetect genes that underexpress in HIV-positive subjects.

Other moments or probabilities offdr with respect tof1are as simple tocalculate as
Efdr1,for example the standard deviation

Sd1=


K

k=1

fdr
2

k·f1k−Efdr
2

1

1/2

,(5.7)

which equals 0.30for the HIV data.The possibility ofdependence amongthe zi’s does not
bias estimates such as (5.6) or (5.7),though it increases their variability.

Goingfurther,we can examine the entire distribution offdr underf1.The heavy curve
in Figure 6shows thef1cdfoffdr for the HIV study,

G(x) =


f̂dr k≤x

f1k

K

k=1

f1k.(5.8)

Figure6:Empirical cdf offdr with respect to estimated non-null densityf1. Heavy curve
HIVstudy; Light curve first simulated sample (4.1), N= 1500. The simulated sample

displays greater power.Efdr1, equals 0.45 for HIVstudy, 0.23 for simulation.

For instanceG(.2) = 0.27,soonly 27% ofthe non-nullcases are estimated tohave fdr values
less than 0.20.By contrast,the first ofthe N= 1500simulated datasets from Table 1is
seen tohave much greater power,withG(.2) = 0.64.
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The limitations ofthe HIV study are forcefully illustrated by Figure 6:ifwe wish to
report 50% ofthe non-nullcases then we must toleratefdr values as high as 0.45=G−1 (.5),
etc.

The thinned counts appearingin Figures 1,2,and 5are defined in terms oforiginal
counts ykas

y1k= (1−fdrk) ·yk.(5.9)

Since 1−fdrkis the probability ofbeingnon-nullfor acase in the kth bin,y1kis,nearly,an
unbiased estimate ofthe number ofnon-nullcases in bin k.We can use the thinned counts
tocarry out sample size power calculations for large-scale studies.

Traditionalsample size calculations employ preliminary datatopredict how large an
experiment willbe required for effective power.Here we might ask,for instance,ifdoubling
the number ofsubjects in the HIV study would substantially improve its detection rate.To
answer the question we assume ahomoskedastic modelfor the z-values,

zi∼(µi,σ2
0),(5.10)

the notation indicatingthat zihas expectation µi,its “true score”and variance σ2
0,with

µi= 0for the nullcases.Sections 6and 7discuss the rationale for (5.10).

We imagine that cindependent replicates of(5.10) are available for each case,from
which acombined statistic ziis formed,

z i=
c

j=1

zij /
√

c∼(
√

cµ i,σ2
0)(5.11)

This definition maintains the distribution ofthe nullcases,zi∼(0,σ2
0),while movingthe

non-nulltrue scores away from zero1by factor
√

c.

Consider asubset ofthe non-nullcases in which the true scores have empiricalmean
and variance say (a,b2).A randomly selected zstatistic “Z”from this subset has marginal
mean and variance

Z∼(A,B 2) = (a,b2+ σ2
0)(5.12)

accordingto(5.10),while the correspondingstatistic “Z”from (5.11) has

Z∼( A,B2) = (
√

ca,cb 2+ σ2
0)(5.13)

Comparing(5.13) with (5.12) shows that the simple formula

Z=
√

cA + d(Z−A),[d 2= c−(c−1)σ 2
0/B 2],(5.14)

givesZthe correct mean and variance.

From the thinned counts (5.9) on the right side ofFigure 5we estimate

A =


z(k) y1k

y1k

= 2.23andB=


z2
(k) y1k
y1k

−A2

1
2

= 0.87,5.15)
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the sums beingover z(k) >0.Then (5.14),with σ0= 0.735from the empiricalnull,describes
how the right-side non-nullzi’s might transform under increased sample sizes (5.11).A
similar calculation applies on the left,while the nullscores,ofwhich there are yk−y1kin
the kth bin,would remain unchanged.

Table 4reports onEfdr1,(5.6),for hypotheticaltransformed datasets havingc=
1,1.5,2,and 2.5.We see that doublingthe number ofsubjects,from 4to8in each group,
would reduceEfdr1from 0.45to0.28,asubstantialimprovement.Table 3involves aconsid-
erable amount ofspeculation,more sothan diagnostics (5.6)-(5.8),but power computations
are traditionally speculative;the calculations here,involvingjust means and variances,are
fashioned tominimize the amount ofparametric modeling.

The dotted curve on the right side ofFigure 5is acubic Poisson GLM fit directly tothe
thinned counts y1k;that is,we assume

y1k
ind ∼Po(ν 1k),(5.16)

for log(ν1k) acubic polynomialin the bin midpoints z(k) ,say

(logν1k) = X1β, (5.17)

with X1aK1×m1structure matrix;K1is the number ofbins involved and m1the number
ofparameters,m1= 4here.

#Subjects 4-46-68-810-10
Efdr1:0.450.330.280.22

Table4:Estimated values ofEfdr1,for expanded versions ofHIV study;doublingthe
study,to8subjects each in the twogroups reducesEfdr1from 0.45to0.28.

The usualGLM estimate ofcovariance forβis

G−1
1= (X

1diag(ν1k)X1)
−1 .(5.18)

However this leads toan overestimate under model(3.1),because y1k= (1−fdrk)ykhas
variance about (1−fdrk)ν1k,less than the Poisson value ν1kassumed in (5.16).A more
accurate approximation is

Cov(β) =G−1
1[X

1diag((1−fdrk)ν 1k)X1)
−1 G−1

1,(5.19)

Estimatingf1directly from the thinned counts is appealingsince it does not involve a
globalfit toallNcases,as does (5.5),afact we took advantage ofin usingonly acubic
modelfor the dotted curve.It did not make much difference tothe HIV analysis though,
nor did simply replacingf1kwith y1kin (5.6)-(5.8).
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6.TheNon-NullDistribution ofz-values

A key assumption ofour fdr estimation methodology was the smooth nature ofthe z-
value mixture density f(z).This section discusses ausefulapproximation for the distribution
ofz-values,nullor non-null,

Z˙∼N(µ,σ 2
µ),(6.1)

where Zrepresents ageneric z-value,µits expectation,“˙∼”indicates second order accu-
racy with distributionalerrors oforder O(n−1 ) in the usualrepeated samplingcontext,and

σµ̇= 1+O(n−1
2).The smoothness assumption is justified by (6.1),which represents f(z) as

awell-controlled mixture ofnormaldensities.

Figure 7illustrates (6.1) for transformed t-statistics (1.1).We suppose that tihas a
noncentraltdistribution,noncentrality θand degrees offreedom ν,

ti∼
θ+ W

S1/2
[W ∼N(0,τ) independent ofs∼τx2

ν/ν].(6.2)

Figure7:Density of z-value (1.1) when tiis non-central tvariate, 6 degrees of freedom;
non-centrality parameter θ= .5,1.5,2.5,3.5,4.5left to right. Means 0.42, 1.35, 2.04, 2.56,
2.96; stdevs 0.98, 0.88, 0.75, 0.65, 0.58. Dotted curves are corresponding normal densities.

By definition zi∼N(0,1) in the nullcase θ= 0.(For the calculations ofthis section
we are ignoringthe failure ofthe theoreticalnullin Figure 4.) Figure 7shows the density
ofzi= Φ−1 (F6(ti)) for θ= .5,1.5,···,4.5.We see σµdecliningfrom 1at θ= 0to0.58at
θ= 4.5,while the normality claimed in (6.1) is nicely maintained.

Relationship (6.1) can be verified in awide variety ofsituations.Suppose Zis based on

testingH0:θ= 0for asummary statisticθhavingcdfFθ,

Z= Φ−1 (F0(θ)). (6.3)
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We assume thatθbehaves asymptotically like amaximum likelihood estimate in terms of
anotionalsample size “n”,its bias,standard deviation,skewness,and kurtosis havingthe
appropriate orders ofmagnitude,

θ−θ∼(B θ/n,C θ/
√

n,D θ/
√

n,E θ/n);(6.4)

Bθ,Cθ,D θ,and Eθare smooth bounded functions ofθand n.

FollowingSections 3-5ofEfron (1987),particularly Theorem 1,there exists amonotone

increasingtransformationφ= g( θ),φ= g(θ),0= g(0),such that

φ˙∼φ+ (1+ aφ)(W −z0),(6.5)

with W ∼N(0,1) and aand z0,the “acceleration”and “bias-correction”constants,each of

order O(n−1
2).At θ= φ= 0we haveφ˙∼N(−z0,1),implyingZ=̇φ+ z0.Then (6.4) gives

Z˙∼φ(1−az 0) + (1+ aφ)W ˙∼N(φ,(1+ aφ)2),(6.6)

(az0= O(n−1 ) beingignorably small) verifying(6.1) with µ= φand

σµ= 1+ aµ.(6.7)

The acceleration constant “a”determines how quickly σµdeparts from σ0= 1.Efron (1987)
derives approximation a = skew (0)/6,in terms ofthe score function0at θ= 0.

As an example suppose we observe scaled one-sided exponentialvarieties,

y1,y2,...,yn
ind ∼θG 1[Pr{G 1<x} = 1−e−x],(6.8)

sothatθ=ȳ∼θGamman/n.For n= 10,and for any choice ofthe nullhypothesis
H0:θ= θ0,the score function approximation gives a = 1/(3

√
10) = .1054,while direct

numericalcomputation yielded

dσ µ

dµ


θ0

= .1049;(6.9)

σµvaried on the range [0.5,1.5]for µin ±5.The normalapproximation is just as impressive
here as in Figure 7.

The gist of(6.1),(6.7) is that as µdeparts from zeroby amount O(1),σµchanges by

O(n−1
2) while normality decays by only O(n−1 ).The student texample ofFigure 7is not

included in development (6.4)-(6.7),because ofthe nuisance parameter τin (6.2),but in fact
showed even greater accuracy for (6.1).This can be verified usingthe diagnostic function in
Efron (1982).

Goingfurther,we can consider the situation where Zis the z-value for asingle parameter
in amultiparameter family.A promisingconjecture is that (6.1),(6.7) holds in multiparam-
eter exponentialfamilies ifz-values are obtained viathe ABC method,DiCiccioand Efron
(1992).Section 4ofEfron (1988) discusses avariant of(6.1) applyingtosequentialsampling.
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Model(6.1) can be used tosharpen the sample size calculations ofSection 5.Consider a
subset ofcases,say the non-nullcases on the right side ofFigure 5,and let g(µ) represent the
empiricaldistribution oftheir true scores µi.Formulas (5.12)-(5.15) tacitly involve estimating

g(µ) :( A,B2),the mean and variance ofthe thinned counts,give estimates (a,b2) for the
mean and variance ofg(µ),(5.12),which depend on the homoskedastic model(5.10).Instead
we could begin with (6.1) and directly deconvolve the thinned counts toobtain g(µ).Doing
somade little difference toTable 4.However g(µ) can be usefulin its own right,in particular
for estimatingthe Bayes posterior distribution oftrue score µigiven zi.

7.Structureand Bias

Model(2.2) envisions twogroups ofcases,nulland non-null.Realistic examples oflarge-
scale inference are apt tobe less clearcut,with true effect sizes rangingsmoothly from zero
or near zerotovery large.Here we consider a“one-class”structuralmodelthat allows for
smooth effects.We can stillusefully apply fdr methods todatafrom one-class models;doing
sohelps clarify the choice between theoreticaland empiricalnullhypothesis and explicates
the biases inherent in model(2.2).

For the theoreticaldevelopments ofthis section we consider aBayesian structuralmodel
where each true score µiis drawn randomly accordingtoaprior density g(µ),with zithen
normally distributed around µi,

µ∼g(·) and z|µ∼N(µ,1). (7.1)

(We could use N(µ,σ2
µ) as in (6.1),but at the expense ofcomplicatingthe formulas that

follow.) The density g(µ) is allowed tohave discrete atoms.It might have an atom at zero,
as in (4.1),but this is not required,and in any case there is noa priori partition ofg(µ) into
nulland non-nullcomponents.

Model(7.1) gives mixture density

f(z) =

∞

−∞
ϕ(µ−z)g(µ)dµ


ϕ(x) = e−1

2
x2

/
√

2π

,(7.2)

with

f(0) =

∞

−∞
ϕ(µ)g(µ)dµ. (7.3)

The ideain what follows is togeneralize the construction ofFigure 4by approximating
(z) = logf(z) with Taylor series other than quadratic.

The Jth Taylor approximation to(z) is

J(z) =
J

j=0

(j) (0)zj/j!, (7.4)

where (0) (0) = logf(0) and for j≥1

(j) (0) =
djlogf(z)

dzj


z=0

.(7.5)
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The sub-density
f+

0(z) = eJ(z) (7.6)

matches f(z) at z= 0(aconvenient use ofthe zeroassumption) and leads toan fdr expression
as in (2.6),

fdr(z) = eJ(z) /f(z). (7.7)

Larger choices ofJmatch f+
0(z) more accurately tof(z),increasingratio(7.7);the inter-

estingz-values,those with smallfdr’s,are pushed farther away from zeroas we allow more
ofthe datastructure tobe explained by the nulldensity.

The Bayesian model(1.1) provides ahelpfulinterpretation ofthe derivatives (j) (0):

Lemma 2The derivative (j) (0),(7.5),is the jth cumulant ofthe posterior distribution
ofµgiven z= 0,except that (2) (0) is the second cumulant minus 1.Thus

(1) (0) = E0and −(2) (0) =V̄0,(7.8)

where E0and V0≡1− V̄0are the posterior mean and variance ofµgiven z= 0.

Proof We have

(z) = log
∞
−∞

e−
1
2(µ−z)2

√
2π

g(µ)dµ

= −1
2
z2+ logf(0) + log

∞
−∞ezµ [ϕ(µ)g(µ)/f(0)]dµ.

(7.9)

Notice that m(z) ≡
∞
−∞ezµ [ϕ(µ)g(µ)/f(0)]dµis the moment generatingfunction ofthe

probability density ϕ(µ)g(µ)/f(0),

djm(z)

dzj
|z=0 =

∞

−∞
µjϕ(µ)g(µ)

f(0)
dµ,(7.10)

the last expression alsobeingthe posterior jth moment ofµgiven z= 0.The usual
relationship between moments and cumlants,applied tothe function (z) +1

2
z2−logf(0),

verifies the Lemma.

For J= 0,1,2,formulas (7.7),(7.8) yield simple expressions for p0and f0(z) in terms
off(0),E 0,andV̄0.These are summarized in Table 5(with p0obtained through definition
(2.4),

p0=
∞

−∞
f+

0(z)dz
−1

.) (7.11)

Formulas are alsoavailable for Fdr(z),(2.8).

The choices J= 0,1,2in Table 5result in anormalnulldensity f0(z),the only difference
beingthe means and variances.GoingtoJ= 3allows for an asymmetric choice off0(z);
from (7.9) and the Lemma,

fdr(z) =
f(0)

f(z)
eE0z− V̄0z2/2+S0z3/6 ,(7.12)
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J:01 2

p0:f(0)
√

2πf(0)
√

2πeE2
0/2 f(0)


2π
V̄0

eE2
0/2 V̄0

f0(z):N(0,1) N(E 0,1) N(E0/̄V0,1/̄V0)

fdr(z): f(0)e−z2/2

f(z)
f(0)eE0z−z2/2

f(z)
f(0)eE0z−V̄0z2/2

f(z)

Table5:Expressions for p0,f0and fdr,first three choices ofJin (7.6),(7.7);numerator
offdr(z) is f +

0(z).J= 0gives theoreticalnull,J= 2empiricalnull;f(z) from (7.2).

p0δσp
(theo)
0E0V0

Model(7.13):0.9160.0131.010.9060.0120.022
Model(7.14):0.9180.0181.130.8210.0140.223

Table6:p0and f0(z) from Table 5;δand σmean and standard deviation ofempirical
null,Top line Model(7.13),as used in simulation study;Bottom line Model(7.14).

where S0is the posterior third centralmoment ofµgiven z= 0in model(7.1).The
program locfdr uses avariant,the “split normal”,tomodelasymmetric nulldensities with
the exponent of(7.12) replaced by aquadratic spine in z.

Lemma2bears on the difference between empiricaland theoreticalnulls.Suppose that
the probability mass ofg(µ) occurringwithin afew units ofthe origin is concentrated in an
atom at µ= 0.Then the posterior mean and variance (E0,V0) ofµgiven z= 0willbe near
0,making(E0,̄V0)=̇ (0,1).In this case the empiricalnull(J= 2) willapproximate the
theoreticalnull(J= 0).Otherwise the twonulls willdiffer;in particular,any mass ofg(µ)

around zeroincreases V0,swellingthe standard deviation (1−V0)
−1

2ofthe empiricalnull.

Model(4.1),used for the simulation study,has

g(µ) = 0.9·I 0(µ) + 0.1·ϕ 3,1 (µ), (7.13)

I0(µ) aunit atom at µ= 0,which gives mixture density f(z) = 0.9·ϕ0,1 (z) + 0.1·ϕ 3,
√

2(z)
accordingto(7.1).The top line ofTable 6shows p0and f0(z) for (7.13),as calculated from
Table 5.This amounts tohavingNequalinfinity in Table 2(except for matchingf+

0(z) to
f(z) at z= 0in (7.6) instead ofaveragingover the centralthird offas in locfdr).We see
smallbiases away from f+

0(z) = 0.9·ϕ 0,1 (z) :p 0exceeds 0.9,more sofor the empiricalnull,
and (δ,σ) is slightly distorted from (0,1).

Bias is more apparent in the left panelofFigure 8,which plots f1(z) = (1−fdr(z))·f(z)
as calculated from Table 5.The left tailoff1(z) is pushed away from zerocompared tothe
nominalf1density ϕ3,

√
2(z),again more sofor the empiricalnull.The zeroassumption is

the culprit here,as mentioned before,since in fact ϕ0,1 and ϕ3,
√

2overlap somewhat.The
empirical’s greater rightward shift,toward smaller fdr values,accounts for its smaller Efdr1

average in Table 3:computingEfdr1=


fdr(z)·f 1(z)dzaccordingtoTable 5gives 0.245for
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the empiricalnulland 0.288for the theoretical,close toTable 3’s simulation values.

Figure8:Non-null density f1(z) computed from Table 5, using empirical null (heavy curve)
or theoretical null (light curve); dots indicate nominal f1density ϕ3,

√
2(z). Left panel model

(7.13); Right panel model (7.14).

“Bias”can be amisleadingterm in model(7.1) since it tacitly assumes that each µiis
clearly defined as either nullor non-null.This seems clear enough in (7.13),where we took
the 0.90atom at µ= 0as null.Suppose though

g(µ) = 0.9·ϕ 0,.5 (µ) + 0.1·ϕ 3,1 (µ),(7.14)

which gives mixture density f(z) = 0.9·ϕ0,1.12 (z) + 0.1·ϕ 3,
√

2(z).This might characterize
an observationalstudy,in which acrisp modellike (7.13) has been blurred by uncontrolled
covariates that cause even the “null”cases tohave slightly non-zeroµivalues;see Section 4
ofEfron (2004).The null/non-nulldistinction is less obvious in (7.14),though it stillmakes
sense toapply model(2.2) tothe search for cases that have µifar from 0.

The right panelofFigure 8and the bottom line ofTable 6show the fdr analysis ofTable
5applied tomodel(7.14).The empiricalnullnow estimates f0(z) as N(0.02,1.13 2),closely
matchingthe N(0,1.122) first component off(z).This results in nearly the same estimates
ofp0and f1(z) as for (7.13).The fdr analysis ofan actualdataset z1,z2,...,zNarising
from (7.1) would identify nearly the same set ofnon-nullcases for either (7.13) or (7.14).

Analysis based on the theoreticalnullchanges drastically in (7.14).Twice as many
cases,some for zi<0,are now identified as non-null,p1= 0.179instead of0.094,with
the principalmode off1(z) moved sharply towards z= 0.This example highlights the
difference in “significance”as judged be the theoreticaland empiricalnulls:simply put,
the empiricalnulljudges significance in the extremes by the spread ofthe centralzi’s,
while the theoreticalnulluses an absolute criterion.Every inference method,Fdr,FWER,
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permutation,Bonferroni,and not just fdr,yields doubtfulresults ifmodel(7.14) is analyzed
in terms ofthe theoreticalnull.

Summary The localfalse discovery rate methodology developed in Sections 3and 5is
based on empiricalBayes analysis ofthe simple two-class model(2.2);fdr calculations pro-
vide both size and power estimates,while requiringaminimum offrequentist or Bayesian
modelingassumptions.The methodology applies tolarge-scale situations,with hundreds of
inference problems considered simultaneously,perhaps at least athousand ifthe theoretical
nullhypothesis is unsatisfactory.A closed form error analysis offdr estimation,developed in
Section 4,is available when the inference problems are independent.Even when the two-class
modelis dubious,as discussed in Section 7,fdr methods can stillbe informative,though now
they are more likely torequire empiricalestimation ofthe nullhypothesis.Allcalculations
are carried through usingstandard Poisson GLM software;program locfdr is available from
the R library CRAN.
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