| | P | | | | | | | |---|-------------------------------|------------|-----------------------------------|----------|--|--------|--------| | Y a | $\overset{a}{_{d}},$ | <i>b</i> , | e, | a, e , | c, e , | a, | n
f | | $^{a}\mathrm{L}$ $^{b}\mathrm{E}$ $^{c}\mathrm{O}$ | $^d\mathrm{G}$ $^f\mathrm{M}$ | S | 5 | e
P | | m
I | ΝΕ | | $\begin{array}{c} \mathrm{Ad} \\ \mathrm{w} \\ \mathrm{t} \end{array}$ | | h | A | | ap | | B | | t
P
t
n
of
an
t | | | $_i$ f | | $\begin{array}{ccc} \mathrm{UE} & & \\ j & & \mathrm{e} & \\ & \mathrm{d} & \\ \mathrm{d} & \end{array}$ | | | | of
NAO
m
of
K | | | $\operatorname{od} \\ \mathbf{e}$ | V | t
t | | S | | T | | 1. | | у | | | I
e | | $egin{array}{c} \mathbf{m} \\ \mathbf{t} \\ \mathbf{al} \\ \mathbf{V} \acute{\mathbf{e}} \end{array}$ | | | e | r | | | r | | d
i
t | | | as | | e | | m
e | | t
3.
Nor
T
ob | | e | | | s | t
1 | 5m | | F
4 | | | | | | | u
5 | ``` W i \mathrm{d} an h p fi t \mathbf{S} NAO Ι \mathbf{t} n d an d e as 2. NE 2. 1. 2. 1. \mathbf{F} ol \left\langle O \quad \left(\vec{\rho}/\lambda \right) \right\rangle = \left\langle O \quad _{\phi_{\epsilon}} \left(\vec{\rho}/\lambda \right) \right\rangle \times \quad _{\mathbf{t}} \quad \left(\vec{\rho}/\lambda \right) Τ e an \epsilon_{\perp} , \left\langle O \qquad \left(\vec{\rho}/\lambda\right)\right\rangle = \left\langle O \qquad {}_{\phi_{\epsilon_{\parallel}}}\left(\vec{\rho}/\lambda\right)\right\rangle \times \left\langle O \qquad {}_{\phi_{\epsilon_{\perp}}}\left(\vec{\rho}/\lambda\right)\right\rangle \times Τ i \left\langle O \quad \left(\vec{\rho}/\lambda\right)\right\rangle = \quad \left(-\frac{1}{2}\bar{D}_{\phi_{\epsilon_{\parallel}}}(\quad\right) \times \quad \left(-\frac{1}{2}\bar{D}_{\phi_{\epsilon_{\perp}}}(\quad\right) \times \quad _{\mathbf{t}} \quad \left(\vec{\rho}/\lambda\right) w е • \langle O \quad \phi_{\epsilon} (\vec{\rho}/\lambda) \rangle i T • O t (\vec{\rho}/\lambda) i T • \langle O \qquad_{\phi_{\epsilon_{\parallel}}} \left(\vec{\rho} / \lambda \right) \rangle i "m T \bullet \left\langle O \quad _{\phi_{\epsilon_{\perp}}} \left(\vec{\rho}/\lambda \right) \right\rangle i T р • \bar{D}_{\phi_{\epsilon_{\parallel}}}(``` • $\bar{D}_{\phi_{\epsilon_{\perp}}}$ (ρ i λ u ``` Т О h \mathbf{F} D_{\phi_{\epsilon_{\parallel}}}(\left\langle \left(\phi_{\epsilon_{\parallel}}(_{\epsilon_{\parallel}}(\right)^{2} ight angle _{i}(_{i}(\phi_{\epsilon_{\parallel}}(\sum_{i}^{N}\epsilon_{\parallel}(_{i}(= an on D_{\phi_{\epsilon_{\parallel}}} \left(\sum_{i}^{N} \sum_{j}^{N} \langle \ _{\parallel} \epsilon_{\parallel} \ \rangle \left(M_{i} \left(\begin{array}{cc} & i \end{array} \right) \ M_{j} \left(\begin{array}{cc} & \\ & j \end{array} \right) \right) w ar{D}_{\phi_{\epsilon_{\parallel}}}(\mathbf{T} ar{D}_{\phi_{m{\epsilon}_{\parallel}}}(\qquad rac{\int D_{\phi_{m{\epsilon}_{\parallel}}}(}{\int P(} w _{i} (2. 1. D \mathbf{E} q ar{D}_{\phi\epsilon_{\parallel}}(\sum_{i}^{N}\sum_{j}^{N}\langle \parallel \epsilon_{\parallel} \rangle _{i} (= \mathbf{T} h \|\epsilon\|^t\rangle х u \|\epsilon\|^t Ι n as \mathbf{S} U_i (\mathbf{E} U_i (_{i} (u gab gi n u of \|\epsilon\|^t\rangle ``` ``` 2. 2. 2. _i a l 2. gor _{\parallel}\ \}_{i} c \parallel^* m Le \epsilon_{\parallel} (_{i}(\Lambda ^t\langle\ _{\parallel}\epsilon_{\parallel}{}^t angle (_{i}\}_{i} e h \mathbf{e} B^tB \Lambda = \left\langle (egin{array}{cc} {}^t \epsilon_\parallel) & {}^t \epsilon_\parallel \end{pmatrix}^t ight angle \mathbf{T} \mathbf{e} _{i}\}_{i} ar{D}_{\phi_{\epsilon_{\parallel}}}(\qquad \sum_{i}^{N} \langle \ _{i}\eta_{i} \rangle \ _{i} \ (\qquad \sum_{i=}^{N} \lambda_{i} \ V_{i} \ (\ _{i} _j h _{i} (\mathbf{e} Af _i (_{i} _{i} (of 2. 2. \mathbf{T} h e d i Le \langle \ \| \epsilon_{\parallel}^{\ t} \rangle \qquad \qquad ^{t} Ι f on \|\epsilon\|^t ar os \langle \quad ^t \rangle \qquad \quad ^t B^t \rangle \qquad \quad ^t = \quad _{\parallel} \epsilon_{\parallel}^{\ \ t} \rangle (\mathbf{T} h \mathbf{e} \phi \qquad \sum_{i}^{N} \beta_{i} (\qquad _{i} (\qquad = (d an PS_{~\parallel}(\hspace{1cm} \left\| \mathcal{F} \hspace{0.5cm} \left(\hspace{0.5cm} \mathrm{e} \hspace{0.5cm} F \hspace{0.5cm} \right) \right\|^2 h \mathbf{T} \mathbf{c} on o ``` ``` 2. 3. \mathbf{T} _{i} an _{i} al þ _i dal _i f om \mathbf{c} i f om \mathbf{c} p am _i al _i ou _i on As n o or \mathbf{S} 1 e (al _i al _i al gor { m T} h ou an \mathbf{c} \mathbf{T} h _{\parallel}\epsilon_{\parallel}{}^{t}\rangle al _{\infty}(gor d _{i}(\hspace{0.5cm} \parallel^{2} \hspace{0.5cm} \big\rangle_{i} \sigma^2 \langle || O \rangle_{\infty} (^{t} d h _i i е \|\epsilon\|_{\mathbf{n}}^t\rangle on \mathbf{m} w _{o} \quad \left(\qquad \right\|^{2} \right\rangle = \frac{\sigma^{2} \left(\qquad \qquad }{n} \langle || O _{\infty}(h W е ob ob \mathbf{t} t 0(_{ m i} / au_0(n \mathbf{I} 3. \mathbf{S} \mathbf{F} 3. 1. 3. 1. Ι n or (S H b \mathbf{c} or \mathbf{c} or 0 W 42. 44 at \mathbf{S} i i W d ow n \|\epsilon\|^t\rangle _i , _i an \mathbf{c} "at { m T} h \mathbf{e} d at ``` • t. ``` • a "P \left\| \mathcal{F} - \left(e - \epsilon_{\perp} (-) \right) \right\|^2 _(x F ou j 1 \frac{\int P(\phi_{\epsilon_{\perp}}(\int P(\phi_{\epsilon_{\perp}}(\phi_{\perp}}(\phi_{\epsilon_{\perp}}(\phi_{\epsilon_{\perp}}(\phi_{\epsilon_{\perp}}(\phi_{\epsilon_{\perp}}(\phi_{\epsilon_\perp}(\phi_{\perp})(\phi_{\epsilon_\perp}(\phi_{\epsilon_\perp}(\phi_{\perp}}(\phi_{\epsilon_\perp}(\phi_{\perp})(\phi_{\epsilon_\perp}(\phi_{\perp}(\phi_{\perp})(\phi_{\perp}(\phi_{\perp}}(\phi_{\perp})(\phi_{\perp})(\phi_{\perp}(\phi_{\perp})(\phi_{\perp})(\phi_{\perp})(\phi_{\perp})(\phi_{\perp}(\phi_{\perp})(\phi_{\perp}) _i f "U _j • an = \frac{\left\langle \int P((\phi_{\epsilon_{\perp}}^{2}(\frac{2}{\epsilon_{\perp}}(-\epsilon_{\perp}(-\epsilon_{\perp}()) d) \right\rangle)}{\int P(-\epsilon_{\perp}P, -\epsilon_{\perp}P)} = \frac{\left\langle C - \frac{2}{\epsilon_{\perp}}P, -\frac{2}{\epsilon_{\perp}}P, -\epsilon_{\perp}P \right\rangle}{C} (= \frac{\mathcal{F}^{-}\left(\left\langle \mathcal{F} \quad ^{2}_{\epsilon_{\perp}}P\right) \quad ^{*}(\quad \quad ^{*}(\ ^{2}_{\epsilon_{\perp}}P) \quad \quad _{\epsilon_{\perp}}P) \quad ^{*}(\ \ _{\epsilon_{\perp}}P)\right\rangle\right)}{\mathcal{F}^{-}\left(\left| \quad ^{2}\right\rangle\right)} = \frac{\mathcal{F}^{-}\left(2\left\langle\Re\left(\mathcal{F} \quad {}^{2}_{\epsilon_{\perp}}P\right) \quad {}^{*}(\quad \right) - \qquad {}_{\epsilon_{\perp}}P\right) \quad {}^{2}\right\rangle\right)}{\mathcal{F}^{-}\left(|\quad \ \ ^{2}\right)} \int f h * i W 3. 3. \overline{n} \, \overline{n}^2 i d an of \frac{2}{z_i} f \overline{n_z^2} 1. \frac{2}{z_i} al \overline{n_z^2} \overline{n_z^2}. n_{s_i}^2 = \sum_j M_S^2 {}_i \; n_{z_j}^2 \; \mathrm{w} \qquad egin{matrix} \mathrm{e} \ 2 \ s_i \end{smallmatrix} \mathrm{i} \qquad t = 0 h , _m _{i}^{2} f 2. _{i}^{2} al f ``` 4. 4. \mathbf{T} \mathbf{S} | | | | 5. | | | | ${f F}$ | |------------------|---------------------|-----------|--------------|--------------|--------------|------------|------------| | R | e | | | | gar | | | | e
O | | | | q | | | Τ | | an | | | | | d | | - | | p
t | | | | | r | | | | U | | A | | | | | C | | T | | f A | | | | | C i | | T
P | | 11 | | | \mathbf{S} | | | | 1 | | | | | | | ab | | e
w | | i | | \mathbf{t} | | | | | W | | or | | | | | | | | | | \mathbf{R} | | | | | | Ar | | | | | | S | | | В | | | au | | | | | | \mathbf{C} | | on | | | | | an | | \mathbf{C} | | on | | | | | an | | D | | | | | | | | | F | | s Vi | t | | | | i | | an | | | | | r d | | | | F | | | | | | | u | | F | | | | | | | u | | F | | | | | | | u | | G | | | | | | e | | | Не | | | | r | | | | | J | | | | | | | | | K | | | | | | | as | | Le | 1 | | | n | | | | | R | ab
i | | | | | au | | | R
R | i | | | | | | | | R
R | od | | | | | d | | | R | ou | | | | | s | | | S | Ou | | | | t | S | | | Vé | | î | | r | Ü | | | | W | | • | | ī | | | e | | $_{ m G}^{ m W}$ | | | | | | ϵ | | | | | | | | | | |