## EXAMPLE 4 Obtaining Information about a Quadratic Function from Its Equation

Consider the quadratic function $f(x)=-3 x^{2}+6 x-13$.
a. Determine, without graphing, whether the function has a minimum value or a maximum value.
b. Find the minimum or maximum value and determine where it occurs.
c. Identify the function's domain and its range.

Solution We begin by identifying $a, b$, and $c$ in the function's equation:

$$
\begin{aligned}
f(x)= & -3 x^{2}+6 x-13 . \\
& a=-3 \quad b=6 \quad c=-13
\end{aligned}
$$

a. Because $a<0$, the function has a maximum value.
b. The maximum value occurs at

$$
x=-\frac{b}{2 a}=-\frac{6}{2(-3)}=-\frac{6}{-6}=-(-1)=1 .
$$

The maximum value occurs at $x=1$ and the maximum value of $f(x)=-3 x^{2}+6 x-13$ is

$$
f(1)=-3 \cdot 1^{2}+6 \cdot 1-13=-3+6-13=-10
$$

We see that the maximum is -10 at $x=1$.
c. Like all quadratic functions, the domain is $(-\infty, \infty)$. Because the function's maximum value is -10 , the range includes all real numbers at or below -10 . The range is $(-\infty,-10]$.

$[-6,6,1]$ by $[-50,20,10]$
Figure 7

We can use the graph of $f(x)=-3 x^{2}+6 x-13$ to visualize the results of Example 4. Figure 7 shows the graph in $\mathrm{a}[-6,6,1]$ by $[-50,20,10]$ viewing rectangle. The maximum function feature verifies that the function's maximum is -10 at $x=1$. Notice that $x$ gives the location of the maximum and $y$ gives the maximum value. Notice, too, that the maximum value is -10 and not the ordered pair $(1,-10)$.
$\$$ Check Point 4 Repeat parts (a) through (c) of Example 4 using the quadratic function $f(x)=4 x^{2}-16 x+1000$.
(4) Solve problems involving a quadratic function's minimum or maximum value.

## Applications of Quadratic Functions

Many applied problems involve finding the maximum or minimum value of a quadratic function, as well as where this value occurs.

## EXAMPLE 5 The Parabolic Path of a Punted Football



Figure 8

Figure 8 shows that when a football is kicked, the nearest defensive player is 6 feet from the point of impact with the kicker's foot. The height of the punted football, $f(x)$, in feet, can be modeled by

$$
f(x)=-0.01 x^{2}+1.18 x+2
$$

where $x$ is the ball's horizontal distance, in feet, from the point of impact with the kicker's foot.
a. What is the maximum height of the punt and how far from the point of impact does this occur?
b. How far must the nearest defensive player, who is 6 feet from the kicker's point of impact, reach to block the punt?

